14 resultados para Estoppel by representation

em National Center for Biotechnology Information - NCBI


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Data from three previous experiments were analyzed to test the hypothesis that brain waves of spoken or written words can be represented by the superposition of a few sine waves. First, we averaged the data over trials and a set of subjects, and, in one case, over experimental conditions as well. Next we applied a Fourier transform to the averaged data and selected those frequencies with high energy, in no case more than nine in number. The superpositions of these selected sine waves were taken as prototypes. The averaged unfiltered data were the test samples. The prototypes were used to classify the test samples according to a least-squares criterion of fit. The results were seven of seven correct classifications for the first experiment using only three frequencies, six of eight for the second experiment using nine frequencies, and eight of eight for the third experiment using five frequencies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate performance-related changes in cortical and cerebellar activity. The largest learning-dependent changes were observed in the anterior lateral cerebellum, where the extent and intensity of activation correlated inversely with psychophysical performance. After learning had occurred (a few minutes), the cerebellar activation almost disappeared; however, it was restored when the subjects were presented with a novel, untrained direction of motion for which psychophysical performance also reverted to chance level. Similar reductions in the extent and intensity of brain activations in relation to learning occurred in the superior colliculus, anterior cingulate, and parts of the extrastriate cortex. The motion direction-sensitive middle temporal visual complex was a notable exception, where there was an expansion of the cortical territory activated by the trained stimulus. Together, these results indicate that the learning and representation of visual motion discrimination are mediated by different, but probably interacting, neuronal subsystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Barn owls can localize a sound source using either the map of auditory space contained in the optic tectum or the auditory forebrain. The auditory thalamus, nucleus ovoidalis (N.Ov), is situated between these two auditory areas, and its inactivation precludes the use of the auditory forebrain for sound localization. We examined the sources of inputs to the N.Ov as well as their patterns of termination within the nucleus. We also examined the response of single neurons within the N.Ov to tonal stimuli and sound localization cues. Afferents to the N.Ov originated with a diffuse population of neurons located bilaterally within the lateral shell, core, and medial shell subdivisions of the central nucleus of the inferior colliculus. Additional afferent input originated from the ipsilateral ventral nucleus of the lateral lemniscus. No afferent input was provided to the N.Ov from the external nucleus of the inferior colliculus or the optic tectum. The N.Ov was tonotopically organized with high frequencies represented dorsally and low frequencies ventrally. Although neurons in the N.Ov responded to localization cues, there was no apparent topographic mapping of these cues within the nucleus, in contrast to the tectal pathway. However, nearly all possible types of binaural response to sound localization cues were represented. These findings suggest that in the thalamo-telencephalic auditory pathway, sound localization is subserved by a nontopographic representation of auditory space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the effects of the external environment on bacterial gene expression can provide valuable insights into an array of cellular mechanisms including pathogenesis, drug resistance, and, in the case of Mycobacterium tuberculosis, latency. Because of the absence of poly(A)+ mRNA in prokaryotic organisms, studies of differential gene expression currently must be performed either with large amounts of total RNA or rely on amplification techniques that can alter the proportional representation of individual mRNA sequences. We have developed an approach to study differences in bacterial mRNA expression that enables amplification by the PCR of a complex mixture of cDNA sequences in a reproducible manner that obviates the confounding effects of selected highly expressed sequences, e.g., ribosomal RNA. Differential expression using customized amplification libraries (DECAL) uses a library of amplifiable genomic sequences to convert total cellular RNA into an amplified probe for gene expression screens. DECAL can detect 4-fold differences in the mRNA levels of rare sequences and can be performed on as little as 10 ng of total RNA. DECAL was used to investigate the in vitro effect of the antibiotic isoniazid on M. tuberculosis, and three previously uncharacterized isoniazid-induced genes, iniA, iniB, and iniC, were identified. The iniB gene has homology to cell wall proteins, and iniA contains a phosphopantetheine attachment site motif suggestive of an acyl carrier protein. The iniA gene is also induced by the antibiotic ethambutol, an agent that inhibits cell wall biosynthesis by a mechanism that is distinct from isoniazid. The DECAL method offers a powerful new tool for the study of differential gene expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Syntax denotes a rule system that allows one to predict the sequencing of communication signals. Despite its significance for both human speech processing and animal acoustic communication, the representation of syntactic structure in the mammalian brain has not been studied electrophysiologically at the single-unit level. In the search for a neuronal correlate for syntax, we used playback of natural and temporally destructured complex species-specific communication calls—so-called composites—while recording extracellularly from neurons in a physiologically well defined area (the FM–FM area) of the mustached bat’s auditory cortex. Even though this area is known to be involved in the processing of target distance information for echolocation, we found that units in the FM–FM area were highly responsive to composites. The finding that neuronal responses were strongly affected by manipulation in the time domain of the natural composite structure lends support to the hypothesis that syntax processing in mammals occurs at least at the level of the nonprimary auditory cortex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effective transcript profiling in animal systems requires isolation of homogenous tissue or cells followed by faithful mRNA amplification. Linear amplification based on cDNA synthesis and in vitro transcription is reported to maintain representation of mRNA levels, however, quantitative data demonstrating this as well as a description of inherent limitations is lacking. We show that published protocols produce a template-independent product in addition to amplifying real target mRNA thus reducing the specific activity of the final product. We describe a modified amplification protocol that minimizes the generation of template-independent product and can therefore generate the desired microgram quantities of message-derived material from 100 ng of total RNA. Application of a second, nested round of cDNA synthesis and in vitro transcription reduces the required starting material to 2 ng of total RNA. Quantitative analysis of these products on Caenorhabditis elegans Affymetrix GeneChips shows that this amplification does not reduce overall sensitivity and has only minor effects on fidelity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computational maps are of central importance to a neuronal representation of the outside world. In a map, neighboring neurons respond to similar sensory features. A well studied example is the computational map of interaural time differences (ITDs), which is essential to sound localization in a variety of species and allows resolution of ITDs of the order of 10 μs. Nevertheless, it is unclear how such an orderly representation of temporal features arises. We address this problem by modeling the ontogenetic development of an ITD map in the laminar nucleus of the barn owl. We show how the owl's ITD map can emerge from a combined action of homosynaptic spike-based Hebbian learning and its propagation along the presynaptic axon. In spike-based Hebbian learning, synaptic strengths are modified according to the timing of pre- and postsynaptic action potentials. In unspecific axonal learning, a synapse's modification gives rise to a factor that propagates along the presynaptic axon and affects the properties of synapses at neighboring neurons. Our results indicate that both Hebbian learning and its presynaptic propagation are necessary for map formation in the laminar nucleus, but the latter can be orders of magnitude weaker than the former. We argue that the algorithm is important for the formation of computational maps, when, in particular, time plays a key role.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Visual classification is the way we relate to different images in our environment as if they were the same, while relating differently to other collections of stimuli (e.g., human vs. animal faces). It is still not clear, however, how the brain forms such classes, especially when introduced with new or changing environments. To isolate a perception-based mechanism underlying class representation, we studied unsupervised classification of an incoming stream of simple images. Classification patterns were clearly affected by stimulus frequency distribution, although subjects were unaware of this distribution. There was a common bias to locate class centers near the most frequent stimuli and their boundaries near the least frequent stimuli. Responses were also faster for more frequent stimuli. Using a minimal, biologically based neural-network model, we demonstrate that a simple, self-organizing representation mechanism based on overlapping tuning curves and slow Hebbian learning suffices to ensure classification. Combined behavioral and theoretical results predict large tuning overlap, implicating posterior infero-temporal cortex as a possible site of classification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies of patients with focal brain damage suggest that topographical representation is subserved by dissociable neural subcomponents. This article offers a condensed review of the literature of “topographical disorientation” and describes several functional MRI studies designed to test hypotheses generated by that review. Three hypotheses are considered: (i) The parahippocampal cortex is critically involved in the acquisition of exocentric spatial information in humans; (ii) separable, posterior, dorsal, and ventral cortical regions subserve the perception and long term representation of position and identity, respectively, of landmarks; and (iii) there is a distinct area of the ventral occipitotemporal cortex that responds maximally to building stimuli and may play a role in the perception of salient landmarks. We conclude with a discussion of the inferential limitations of neuroimaging and lesion studies. It is proposed that combining these two approaches allows for inferences regarding the computational involvement of a neuroanatomical substrate in a given cognitive process although neither method can strictly support this conclusion alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the mammalian cochlea, the basilar membrane's (BM) mechanical responses are amplified, and frequency tuning is sharpened through active feedback from the electromotile outer hair cells (OHCs). To be effective, OHC feedback must be delivered to the correct region of the BM and introduced at the appropriate time in each cycle of BM displacement. To investigate when OHCs contribute to cochlear amplification, a laser-diode interferometer was used to measure tone-evoked BM displacements in the basal turn of the guinea pig cochlea. Measurements were made at multiple sites across the width of the BM, which are tuned to the same characteristic frequency (CF). In response to CF tones, the largest displacements occur in the OHC region and phase lead those measured beneath the outer pillar cells and adjacent to the spiral ligament by about 90°. Postmortem, responses beneath the OHCs are reduced by up to 65 dB, and all regions across the width of the BM move in unison. We suggest that OHCs amplify BM responses to CF tones when the BM is moving at maximum velocity. In regions of the BM where OHCs contribute to its motion, the responses are compressive and nonlinear. We measured the distribution of nonlinear compressive vibrations along the length of the BM in response to a single frequency tone and estimated that OHC amplification is restricted to a 1.25- to 1.40-mm length of BM centered on the CF place.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Efficient and reliable classification of visual stimuli requires that their representations reside a low-dimensional and, therefore, computationally manageable feature space. We investigated the ability of the human visual system to derive such representations from the sensory input-a highly nontrivial task, given the million or so dimensions of the visual signal at its entry point to the cortex. In a series of experiments, subjects were presented with sets of parametrically defined shapes; the points in the common high-dimensional parameter space corresponding to the individual shapes formed regular planar (two-dimensional) patterns such as a triangle, a square, etc. We then used multidimensional scaling to arrange the shapes in planar configurations, dictated by their experimentally determined perceived similarities. The resulting configurations closely resembled the original arrangements of the stimuli in the parameter space. This achievement of the human visual system was replicated by a computational model derived from a theory of object representation in the brain, according to which similarities between objects, and not the geometry of each object, need to be faithfully represented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examined the effects of eye position on saccades evoked by electrical stimulation of the intraparietal sulcus (IPS) of rhesus monkeys. Microstimulation evoked saccades from sites on the posterior bank, floor, and the medial bank of the IPS. The size and direction of the eye movements varied as a function of initial eye position before microstimulation. At many stimulation sites, eye position affected primarily the amplitude and not the direction of the evoked saccades. These "modified vector saccades" were characteristic of most stimulation-sensitive zones in the IPS, with the exception of a narrow strip located mainly on the floor of the sulcus. Stimulation in this "intercalated zone" evoked saccades that moved the eyes into a particular region in head-centered space, independent of the starting position of the eyes. This latter response is compatible with the stimulation site representing a goal zone in head-centered coordinates. On the other hand, the modified vector saccades observed outside the intercalated zone are indicative of a more distributed representation of head-centered space. A convergent projection from many modified vector sites onto each intercalated site may be a basis for a transition from a distributed to a more explicit representation of space in head-centered coordinates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a general approach to forming structure-activity relationships (SARs). This approach is based on representing chemical structure by atoms and their bond connectivities in combination with the inductive logic programming (ILP) algorithm PROGOL. Existing SAR methods describe chemical structure by using attributes which are general properties of an object. It is not possible to map chemical structure directly to attribute-based descriptions, as such descriptions have no internal organization. A more natural and general way to describe chemical structure is to use a relational description, where the internal construction of the description maps that of the object described. Our atom and bond connectivities representation is a relational description. ILP algorithms can form SARs with relational descriptions. We have tested the relational approach by investigating the SARs of 230 aromatic and heteroaromatic nitro compounds. These compounds had been split previously into two subsets, 188 compounds that were amenable to regression and 42 that were not. For the 188 compounds, a SAR was found that was as accurate as the best statistical or neural network-generated SARs. The PROGOL SAR has the advantages that it did not need the use of any indicator variables handcrafted by an expert, and the generated rules were easily comprehensible. For the 42 compounds, PROGOL formed a SAR that was significantly (P < 0.025) more accurate than linear regression, quadratic regression, and back-propagation. This SAR is based on an automatically generated structural alert for mutagenicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The previously established cortical representation of rat whiskers in layer IV of the cortex contains distinct cylindrical columns of cellular aggregates, which are termed barrels and correlate in a one-to-one relation to whiskers on the contralateral rat face. In the present study, functional magnetic resonance imaging (fMRI) of the rat brain was used to map whisker barrel activation during mechanical up-down movement (+/- 2.5 mm amplitude at 8 Hz) of single/multiple whisker(s). Multislice gradient echo fMRI experiments were performed at 7 T with in-plane image resolution of 220 x 220 microns, slice thickness of 1 mm, and echo time of 16 ms. Highly significant (P < 0.001) and localized contralateral regions of activation were observed upon stimulation of single/multiple whisker(s). In all experiments (n = 10), the locations of activation relative to bregma and midline were highly correlated with the neuroanatomical position of the corresponding whisker barrels, and the results were reproducible intra- and interanimal. Our results indicate that fMRI based on blood oxygenation level-dependent image contrast has the sensitivity to depict activation of a single whisker barrel in the rat brain. This noninvasive technique will supplement existing methods in the study of rat barrel cortex and should be particularly useful for the long-term investigations of central nervous system in the same animal.