7 resultados para Escape of particles

em National Center for Biotechnology Information - NCBI


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Considering the well established role of nonclassical HLA-G class I molecules in inhibiting natural killer (NK) cell function, the consequence of abnormal HLA-G expression in malignant cells should be the escape of tumors from immunosurveillance. To examine this hypothesis, we analyzed HLA-G expression and NK sensitivity in human malignant melanoma cells. Our analysis of three melanoma cell lines and ex vivo biopsy demonstrated that (i) IGR and M74 human melanoma cell lines exhibit a high level of HLA-G transcription with differential HLA-G isoform transcription and protein expression patterns, (ii) a higher level of HLA-G transcription ex vivo is detected in a skin melanoma metastasis biopsy compared with a healthy skin fragment from the same individual, and (iii) HLA-G protein isoforms other than membrane-bound HLA-G1 protect IGR from NK lysis. It thus appears of critical importance to consider the specific role of HLA-G expression in tumors in the design of future cancer immunotherapies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

5-HT-moduline is an endogenous tetrapeptide [Leu-Ser-Ala-Leu (LSAL)] that was first isolated from bovine brain tissue. To understand the physiological role of this tetrapeptide, we studied the localization of 5-HT-moduline binding sites in rat and mouse brains. Quantitative data obtained with a gaseous detector of β-particles (β-imager) indicated that [3H]-5-HT-moduline bound specifically to rat brain sections with high affinity (Kd = 0.77 nM and Bmax = 0.26 dpm/mm2). Using film autoradiography in parallel, we found that 5-HT-moduline binding sites were expressed in a variety of rat and mouse brain structures. In 5-HT1B receptor knock-out mice, the specific binding of [3H]-5-HT-moduline was not different from background labeling, indicating that 5-HT-moduline targets are exclusively located on the 5-HT1B receptors. Although the distribution of 5-HT-moduline binding sites was similar to that of 5-HT1B receptors, they did not overlap totally. Differences in distribution patterns were found in regions containing either high levels of 5-HT1B receptors such as globus pallidus and subiculum that were poorly labeled or in other regions such as dentate gyrus of hippocampus and cortex where the relative density of 5-HT-moduline binding sites was higher than that of 5-HT1B receptors. In conclusion, our data, based on autoradiographic localization, indicate that 5-HT-moduline targets are located on 5-HT1B receptors present both on 5-HT afferents and postsynaptic neurons. By interacting specifically with 5-HT1B receptors, this tetrapeptide may play a pivotal role in pathological states such as stress that involves the dysfunction of 5-HT neurotransmission.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Most analyses of Brownian flocculation apply to conditions where London–van der Waals attractive forces cause particles to be strongly bound in a deep interparticle potential well. In this paper, results are reported that show the interaction between primary- and secondary-minimum flocculation when the interparticle potential curve reflects both attractive and electrostatic repulsive forces. The process is highly time-dependent because of transfer of particles from secondary- to primary-minimum flocculation. Essential features of the analysis are corroborated by experiments with 0.80-μm polystyrene spheres suspended in aqueous solutions of NaCl over a range of ionic strengths. In all cases, experiments were restricted to the initial stage of coagulation, where singlets and doublets predominate.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mammalian hearing depends on the enhanced mechanical properties of the basilar membrane within the cochlear duct. The enhancement arises through the action of outer hair cells that act like force generators within the organ of Corti. Simple considerations show that underlying mechanism of somatic motility depends on local area changes within the lateral membrane of the cell. The molecular basis for this phenomenon is a dense array of particles that are inserted into the basolateral membrane and that are capable of sensing membrane potential field. We show here that outer hair cells selectively take up fructose, at rates high enough to suggest that a sugar transporter may be part of the motor complex. The relation of these findings to a recent candidate for the molecular motor is also discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Escape of cancer cells from the circulation (extravasation) is thought to be a major rate-limiting step in metastasis, with few cells being able to extravasate. Furthermore, highly metastatic cells are believed to extravasate more readily than poorly metastatic cells. We assessed in vivo the extravasation ability of highly metastatic ras-transformed NIH 3T3 cells (PAP2) versus control nontumorigenic nontransformed NIH 3T3 cells and primary mouse embryo fibroblasts. Fluorescently labeled cells were injected intravenously into chicken embryo chorioallantoic membrane and analyzed by intravital videomicroscopy. The chorioallantoic membrane is an appropriate model for studying extravasation, since, at the embryonic stage used, the microvasculature exhibits a continuous basement membrane and adult permeability properties. The kinetics of extravasation were assessed by determining whether individual cells (n = 1481) were intravascular, extravascular, or in the process of extravasation, at 3, 6, and 24 h after injection. Contrary to expectations, our results showed that all three cell types extravasated with the same kinetics. By 24 h after injection > 89% of observed cells had completed extravasation from the capillary plexus. After extravasation, individual fibroblasts of all cell types demonstrated preferential migration within the mesenchymal layer toward arterioles, not to venules or lymphatics. Thus in this model and for these cells, extravasation is independent of metastatic ability. This suggests that the ability to extravasate in vivo is not necessarily predictive of subsequent metastasis formation, and that postextravasation events may be key determinants in metastasis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The clinical efficacy of local anesthetic and antiarrhythmic drugs is due to their voltage- and frequency-dependent block of Na+ channels. Quaternary local anesthetic analogs such as QX-314, which are permanently charged and membrane-impermeant, effectively block cardiac Na+ channels when applied from either side of the membrane but block neuronal Na+ channels only from the intracellular side. This difference in extracellular access to QX-314 is retained when rat brain rIIA Na+ channel alpha subunits and rat heart rH1 Na+ channel alpha subunits are expressed transiently in tsA-201 cells. Amino acid residues in transmembrane segment S6 of homologous domain IV (IVS6) of Na+ channel alpha subunits have important effects on block by local anesthetic drugs. Although five amino acid residues in IVS6 differ between brain rIIA and cardiac rH1, exchange of these amino acid residues by site-directed mutagenesis showed that only conversion of Thr-1755 in rH1 to Val as in rIIA was sufficient to reduce the rate and extent of block by extracellular QX-314 and slow the escape of drug from closed channels after use-dependent block. Tetrodotoxin also reduced the rate of block by extracellular QX-314 and slowed escape of bound QX-314 via the extracellular pathway in rH1, indicating that QX-314 must move through the pore to escape. QX-314 binding was inhibited by mutation of Phe-1762 in the local anesthetic receptor site of rH1 to Ala whether the drug was applied extracellularly or intracellularly. Thus, QX-314 binds to a single site in the rH1 Na+ channel alpha subunit that contains Phe-1762, whether it is applied from the extracellular or intracellular side of the membrane. Access to that site from the extracellular side of the pore is determined by the amino acid at position 1755 in the rH1 cardiac Na+ channel.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have observed electrostatic trapping of tribranched DNA molecules undergoing electrophoresis in a microfabricated pseudo-two-dimensional array of posts. Trapping occurs in a unique transport regimen in which the electrophoretic mobility is extremely sensitive to polymer topology. The arrest of branched polymers is explained by considering their center-of-mass motion; in certain conformations, owing to the constraints imposed by the obstacles a molecule cannot advance without the center of mass first moving a short distance backwards. The depth of the resulting local potential well can be much greater than the thermal energy so that escape of an immobilized molecule can be extremely slow. We summarize the expected behavior of the mobility as a function of field strength and topology and point out that the microfabricated arrays are highly suitable for detecting an extremely small number of branched molecules in a very large population of linear molecules.