4 resultados para Equilibrium rate

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Improved strategies for synthesis make it possible to expand the range of glycopeptides available for detailed conformational studies. The glycopeptide 1 was synthesized using a new solid phase synthesis of carbohydrates and a convergent coupling to peptide followed by deprotection. Its conformational properties were subjected to NMR analysis and compared with a control peptide 2 prepared by conventional solid phase methods. Whereas peptide 2 fails to manifest any appreciable secondary structure, the glycopeptide 1 does show considerable conformational bias suggestive of an equilibrium between an ordered and a random state. The implications of this ordering effect for the larger issue of protein folding are considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe and test a Markov chain model of microsatellite evolution that can explain the different distributions of microsatellite lengths across different organisms and repeat motifs. Two key features of this model are the dependence of mutation rates on microsatellite length and a mutation process that includes both strand slippage and point mutation events. We compute the stationary distribution of allele lengths under this model and use it to fit DNA data for di-, tri-, and tetranucleotide repeats in humans, mice, fruit flies, and yeast. The best fit results lead to slippage rate estimates that are highest in mice, followed by humans, then yeast, and then fruit flies. Within each organism, the estimates are highest in di-, then tri-, and then tetranucleotide repeats. Our estimates are consistent with experimentally determined mutation rates from other studies. The results suggest that the different length distributions among organisms and repeat motifs can be explained by a simple difference in slippage rates and that selective constraints on length need not be imposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The equilibrium dissociation of recombinant human IFN-γ was monitored as a function of pressure and sucrose concentration. The partial molar volume change for dissociation was −209 ± 13 ml/mol of dimer. The specific molar surface area change for dissociation was 12.7 ± 1.6 nm2/molecule of dimer. The first-order aggregation rate of recombinant human IFN-γ in 0.45 M guanidine hydrochloride was studied as a function of sucrose concentration and pressure. Aggregation proceeded through a transition-state species, N*. Sucrose reduced aggregation rate by shifting the equilibrium between native state (N) and N* toward the more compact N. Pressure increased aggregation rate through increased solvation of the protein, which exposes more surface area, thus shifting the equilibrium away from N toward N*. The changes in partial molar volume and specific molar surface area between the N* and N were −41 ± 9 ml/mol of dimer and 3.5 ± 0.2 nm2/molecule, respectively. Thus, the structural change required for the formation of the transition state for aggregation is small relative to the difference between N and the dissociated state. Changes in waters of hydration were estimated from both specific molar surface area and partial molar volume data. From partial molar volume data, estimates were 25 and 128 mol H2O/mol dimer for formation of the aggregation transition state and for dissociation, respectively. From surface area data, estimates were 27 and 98 mol H2O/mol dimer. Osmotic stress theory yielded values ≈4-fold larger for both transitions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phosphorylation of the alpha-1 subunit of rat Na+,K(+)-ATPase by protein kinase C has been shown previously to decrease the activity of the enzyme in vitro. We have now undertaken an investigation of the mechanism by which this inhibition occurs. Analysis of the phosphorylation of recombinant glutathione S-transferase fusion proteins containing putative cytoplasmic domains of the protein, site-directed mutagenesis, and two-dimensional peptide mapping indicated that protein kinase C phosphorylated the alpha-1 subunit of the rat Na+,K(+)-ATPase within the extreme NH2-terminal domain, on serine-23. The phosphorylation of this residue resulted in a shift in the equilibrium toward the E1 form, as measured by eosin fluorescence studies, and this was associated with a decrease in the apparent K+ affinity of the enzyme, as measured by ATPase activity assays. The rate of transition from E2 to E1 was apparently unaffected by phosphorylation by protein kinase C. These results, together with previous studies that examined the effects of tryptic digestion of Na+,K(+)-ATPase, suggest that the NH2-terminal domain of the alpha-1 subunit, including serine-23, is involved in regulating the activity of the enzyme.