5 resultados para Epithelial injury

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to identify, isolate, and transplant progenitor cells from solid tissues would greatly facilitate the treatment of diseases currently requiring whole organ transplantation. In this study, cell fractions enriched in candidate epithelial progenitor cells from the rat pancreas were isolated and transplanted into the liver of an inbred strain of Fischer rats. Using a dipeptidyl dipeptidase IV genetic marker system to follow the fate of transplanted cells in conjunction with albumin gene expression, we provide conclusive evidence that, after transplantation to the liver, epithelial progenitor cells from the pancreas differentiate into hepatocytes, express liver-specific proteins, and become fully integrated into the liver parenchymal structure. These studies demonstrate the presence of multipotent progenitor cells in the adult pancreas and establish a role for the liver microenvironment in the terminal differentiation of epithelial cells of foregut origin. They further suggest that such progenitor cells might be useful in studies of organ repopulation following acute or chronic liver injury.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NO2Tyr (3-Nitrotyrosine) is a modified amino acid that is formed by nitric oxide-derived species and has been implicated in the pathology of diverse human diseases. Nitration of active-site tyrosine residues is known to compromise protein structure and function. Although free NO2Tyr is produced in abundant concentrations under pathological conditions, its capacity to alter protein structure and function at the translational or posttranslational level is unknown. Here, we report that free NO2Tyr is transported into mammalian cells and selectively incorporated into the extreme carboxyl terminus of α-tubulin via a posttranslational mechanism catalyzed by the enzyme tubulin–tyrosine ligase. In contrast to the enzymatically regulated carboxyl-terminal tyrosination/detyrosination cycle of α-tubulin, incorporation of NO2Tyr shows apparent irreversibility. Nitrotyrosination of α-tubulin induces alterations in cell morphology, changes in microtubule organization, loss of epithelial-barrier function, and intracellular redistribution of the motor protein cytoplasmic dynein. These observations imply that posttranslational nitrotyrosination of α-tubulin invokes conformational changes, either directly or via allosteric interactions, in the surface-exposed carboxyl terminus of α-tubulin that compromises the function of this critical domain in regulating microtubule organization and binding of motor- and microtubule-associated proteins. Collectively, these observations illustrate a mechanism whereby free NO2Tyr can impact deleteriously on cell function under pathological conditions encompassing reactive nitrogen species production. The data also yield further insight into the role that the α-tubulin tyrosination/detyrosination cycle plays in microtubule function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have previously shown that human munc13 (hmunc13) is up-regulated by hyperglycemia under in vitro conditions in human mesangial cell cultures. The purpose of the present study was to determine the cellular function of hmunc13. To do this, we have investigated the subcellular localization of hmunc13 in a transiently transfected renal cell line, opossum kidney cells. We have found that hmunc13 is a cytoplasmic protein and is translocated to the Golgi apparatus after phorbol ester stimulation. In addition, cells transfected with hmunc13 demonstrate apoptosis after treatment with phorbol ester, but cells transfected with an hmunc13 deletion mutant in which the diacylglycerol (C1) binding domain is absent exhibit no change in intracellular distribution and no induction of apoptosis in the presence of phorbol ester stimulation. We conclude that both the diacylglycerol-induced translocation and the apoptosis represent functional activity of hmunc13. We have also demonstrated that munc13-1 and munc13-2 are localized mainly to cortical epithelial cells in rat kidney and both are overexpressed under conditions of hyperglycemia in a streptozotocin-treated diabetic rat model. Taken together, our data suggest that hmunc13 serves as a diacylglycerol-activated, PKC-independent signaling pathway capable of inducing apoptosis and that this pathway may contribute to the renal cell complications of hyperglycemia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Injury, inflammation, or resection of the small intestine results in severe compromise of intestinal function. Nevertheless, therapeutic strategies for enhancing growth and repair of the intestinal mucosal epithelium are currently not available. We demonstrate that nude mice bearing subcutaneous proglucagon-producing tumors exhibit marked proliferation of the small intestinal epithelium. The factor responsible for inducing intestinal proliferation was identified as glucagon-like peptide 2 (GLP-2), a 33-aa peptide with no previously ascribed biological function. GLP-2 stimulated crypt cell proliferation and consistently induced a marked increase in bowel weight and villus growth of the jejunum and ileum that was evident within 4 days after initiation of GLP-2 administration. These observations define a novel biological role for GLP-2 as an intestinal-derived peptide stimulator of small bowel epithelial proliferation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mammals continually confront microbes at mucosal surfaces. A current model suggests that epithelial cells contribute to defense at these sites, in part through the production of broad-spectrum antibiotic peptides. Previous studies have shown that invertebrates can mount a host defense response characterized by the induction in epithelia] cells of a variety of antibiotic proteins and peptides when they are challenged with microorganisms, bacterial cell wall/membrane components, or traumatic injury [Boman, H.G. & Hultmark, D. (1987) Annu. Rev. Microbiol. 41, 103-126J. However, factors that govern the expression of similar defense molecules in mammalian epithelial cells are poorly understood. Here, a 13-fold induction of the endogenous gene encoding tracheal antimicrobial peptide was found to characterize a host response of tracheal epithelia] cells (TECs) exposed to bacterial lipopolysaccharide (LPS). Northern blot data indicated that TECs express CD14, a well-characterized LPS-binding protein known to mediate many LPS responses. A monoclonal antibody to CD14 blocked the observed tracheal antimicrobial peptide induction by LPS under serum-free conditions. Together the data support that CD14 of epithelial cell origin mediates the LPS induction of an antibiotic peptide gene in TECs, providing evidence for the active participation of epithelial cells in the host's local defense response to bacteria. Furthermore, the data allude to a conservation of this host response in evolution and suggest that a similar inducible pathway of host defense is prevalent at mucosal surfaces of mammals.