11 resultados para Enzyme kinetic

em National Center for Biotechnology Information - NCBI


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phospholipid signaling mediated by lipid-derived second messengers or biologically active lipids is still new and is not well established in plants. We recently have found that lysophosphatidylethanolamine (LPE), a naturally occurring lipid, retards senescence of leaves, flowers, and postharvest fruits. Phospholipase D (PLD) has been suggested as a key enzyme in mediating the degradation of membrane phospholipids during the early stages of plant senescence. Here we report that LPE inhibited the activity of partially purified cabbage PLD in a cell-free system in a highly specific manner. Inhibition of PLD by LPE was dose-dependent and increased with the length and unsaturation of the LPE acyl chain whereas individual molecular components of LPE such as ethanolamine and free fatty acid had no effect on PLD activity. Enzyme-kinetic analysis suggested noncompetitive inhibition of PLD by LPE. In comparison, the related lysophospholipids such as lysophosphatidylcholine, lysophosphatidylglycerol, and lysophosphotidylserine had no significant effect on PLD activity whereas PLD was stimulated by lysophosphatidic acid and inhibited by lysophosphatidylinositol. Membrane-associated and soluble PLD, extracted from cabbage and castor bean leaf tissues, also was inhibited by LPE. Consistent with acyl-specific inhibition of PLD by LPE, senescence of cranberry fruits as measured by ethylene production was more effectively inhibited according to the increasing acyl chain length and unsaturation of LPE. There are no known specific inhibitors of PLD in plants and animals. We demonstrate specific inhibitory regulation of PLD by a lysophospholipid.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Natural ribozymes require metal ion cofactors that aid both in structural folding and in chemical catalysis. In contrast, many protein enzymes produce dramatic rate enhancements using only the chemical groups that are supplied by their constituent amino acids. This fact is widely viewed as the most important feature that makes protein a superior polymer for the construction of biological catalysts. Herein we report the in vitro selection of a catalytic DNA that uses histidine as an active component for an RNA cleavage reaction. An optimized deoxyribozyme from this selection requires l-histidine or a closely related analog to catalyze RNA phosphoester cleavage, producing a rate enhancement of ≈1-million-fold over the rate of substrate cleavage in the absence of enzyme. Kinetic analysis indicates that a DNA–histidine complex may perform a reaction that is analogous to the first step of the proposed catalytic mechanism of RNase A, in which the imidazole group of histidine serves as a general base catalyst. Similarly, ribozymes of the “RNA world” may have used amino acids and other small organic cofactors to expand their otherwise limited catalytic potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present evidence that the size of an active site side chain may modulate the degree of hydrogen tunneling in an enzyme-catalyzed reaction. Primary and secondary kH/kT and kD/kT kinetic isotope effects have been measured for the oxidation of benzyl alcohol catalyzed by horse liver alcohol dehydrogenase at 25°C. As reported in earlier studies, the relationship between secondary kH/kT and kD/kT isotope effects provides a sensitive probe for deviations from classical behavior. In the present work, catalytic efficiency and the extent of hydrogen tunneling have been correlated for the alcohol dehydrogenase-catalyzed hydride transfer among a group of site-directed mutants at position 203. Val-203 interacts with the opposite face of the cofactor NAD+ from the alcohol substrate. The reduction in size of this residue is correlated with diminished tunneling and a two orders of magnitude decrease in catalytic efficiency. Comparison of the x-ray crystal structures of a ternary complex of a high-tunneling (Phe-93 → Trp) and a low-tunneling (Val-203 → Ala) mutant provides a structural basis for the observed effects, demonstrating an increase in the hydrogen transfer distance for the low-tunneling mutant. The Val-203 → Ala ternary complex crystal structure also shows a hyperclosed interdomain geometry relative to the wild-type and the Phe-93 → Trp mutant ternary complex structures. This demonstrates a flexibility in interdomain movement that could potentially narrow the distance between the donor and acceptor carbons in the native enzyme and may enhance the role of tunneling in the hydride transfer reaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two arginine residues, Arg-181 and Arg-268, are conserved throughout the known family of FMN-containing enzymes that catalyze the oxidation of α-hydroxyacids. In the lactate oxidase from Aerococcus viridans, these residues have been changed to lysine in two single mutations and in a double mutant form. In addition, Arg-181 has been replaced by methionine to determine the effect of removing the positive charge on the residue. The effects of these replacements on the kinetic and thermodynamic properties are reported. With all mutant forms, there are only small effects on the reactivity of the reduced flavin with oxygen. On the other hand, the efficiency of reduction of the oxidized flavin by l-lactate is greatly reduced, particularly with the R268K mutant forms. The results demonstrate the importance of the two arginine residues in the binding of substrate and its interaction with the flavin, and are consistent with a previous hypothesis that they also play a role of charge neutralization in the transition state of substrate dehydrogenation. The replacement of Arg-268 by lysine also results in a slow conversion of the 8-CH3- substituent of FMN to yield 8-formyl-FMN, still tightly bound to the enzyme, and with significantly different physical and chemical properties from those of the FMN-enzyme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sulfite oxidase catalyzes the terminal reaction in the degradation of sulfur amino acids. Genetic deficiency of sulfite oxidase results in neurological abnormalities and often leads to death at an early age. The mutation in the sulfite oxidase gene responsible for sulfite oxidase deficiency in a 5-year-old girl was identified by sequence analysis of cDNA obtained from fibroblast mRNA to be a guanine to adenine transition at nucleotide 479 resulting in the amino acid substitution of Arg-160 to Gln. Recombinant protein containing the R160Q mutation was expressed in Escherichia coli, purified, and characterized. The mutant protein contained its full complement of molybdenum and heme, but exhibited 2% of native activity under standard assay conditions. Absorption spectroscopy of the isolated molybdenum domains of native sulfite oxidase and of the R160Q mutant showed significant differences in the 480- and 350-nm absorption bands, suggestive of altered geometry at the molybdenum center. Kinetic analysis of the R160Q protein showed an increase in Km for sulfite combined with a decrease in kcat resulting in a decrease of nearly 1,000-fold in the apparent second-order rate constant kcat/Km. Kinetic parameters for the in vitro generated R160K mutant were found to be intermediate in value between those of the native protein and the R160Q mutant. Native sulfite oxidase was rapidly inactivated by phenylglyoxal, yielding a modified protein with kinetic parameters mimicking those of the R160Q mutant. It is proposed that Arg-160 attracts the anionic substrate sulfite to the binding site near the molybdenum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NADP+-isocitrate dehydrogenase (NADP+-IDH; EC 1.1.1.42) is involved in the supply of 2-oxoglutarate for ammonia assimilation and glutamate synthesis in higher plants through the glutamine synthetase/glutamate synthase (GS/GOGAT) cycle. Only one NADP+-IDH form of cytosolic localization was detected in green cotyledons of pine (Pinus spp.) seedlings. The pine enzyme was purified and exhibited molecular and kinetic properties similar to those described for NADP+-IDH from angiosperm, with a higher catalytic efficiency (105 m−1 s−1) than the deduced efficiencies for GS and GOGAT in higher plants. A polyclonal antiserum was raised against pine NADP+-IDH and used to assess protein expression in the seedlings. Steady-state levels of NADP+-IDH were coordinated with GS during seed germination and were associated with GS/GOGAT enzymes during chloroplast biogenesis, suggesting that NADP+-IDH is involved in the provision of carbon skeletons for the synthesis of nitrogen-containing molecules. However, a noncoordinated pattern of NADP+-IDH and GS/GOGAT was observed in advanced stages of cotyledon development and in the hypocotyl. A detailed analysis in hypocotyl sections revealed that NADP+-IDH abundance was inversely correlated with the presence of GS, GOGAT, and ribulose-1,5-bisphosphate carboxylase/oxygenase but was associated with the differentiation of the organ. These results cannot be explained by the accepted role of the enzyme in nitrogen assimilation and strongly suggest that NADP+-IDH may have other, as-yet-unknown, biological functions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bovine heart cytochrome c oxidase is an electron-current driven proton pump. To investigate the mechanism by which this pump operates it is important to study individual electron- and proton-transfer reactions in the enzyme, and key reactions in which they are kinetically and thermodynamically coupled. In this work, we have simultaneously measured absorbance changes associated with electron-transfer reactions and conductance changes associated with protonation reactions following pulsed illumination of the photolabile complex of partly reduced bovine cytochrome c oxidase and carbon monoxide. Following CO dissociation, several kinetic phases in the absorbance changes were observed with time constants ranging from approximately 3 microseconds to several milliseconds, reflecting internal electron-transfer reactions within the enzyme. The data show that the rate of one of these electron-transfer reactions, from cytochrome a3 to a on a millisecond time scale, is controlled by a proton-transfer reaction. These results are discussed in terms of a model in which cytochrome a3 interacts electrostatically with a protonatable group, L, in the vicinity of the binuclear center, in equilibrium with the bulk through a proton-conducting pathway, which determines the rate of proton transfer (and indirectly also of electron transfer). The interaction energy of cytochrome a3 with L was determined independently from the pH dependence of the extent of the millisecond-electron transfer and the number of protons released, as determined from the conductance measurements. The magnitude of the interaction energy, 70 meV (1 eV = 1.602 x 10(-19) J), is consistent with a distance of 5-10 A between cytochrome a3 and L. Based on the recently determined high-resolution x-ray structures of bovine and a bacterial cytochrome c oxidase, possible candidates for L and a physiological role for L are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nonclassical major histocompatibility complex class II molecule HLA-DM (DM) has recently been shown to play a central role in the class II-associated antigen presentation pathway: DM releases invariant chain-derived CLIP peptides (class II-associated invariant chain protein peptide) from HLA-DR (DR) molecules and thereby facilitates loading with antigenic peptides. Some observations have led to the suggestion that DM acts in a catalytic manner, but so far direct proof is missing. Here, we investigated in vitro the kinetics of exchange of endogenously bound CLIP for various peptides on DR1 and DR2a molecules: we found that in the presence of DM the peptide loading process follows Michaelis-Menten kinetics with turnover numbers of 3-12 DR molecules per minute per DM molecule, and with KM values of 500-1000 nM. In addition, surface plasmon resonance measurements showed that DM interacts efficiently with DR-CLIP complexes but only weakly with DR-peptide complexes isolated from DM-positive cells. Taken together, our data provide evidence that DM functions as an enzyme-like catalyst of peptide exchange and favors the generation of long-lived DR-peptide complexes that are no longer substrates for DM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrospray ionization time-of-flight (ESI-TOF) mass spectrometry was used to study the quaternary structure of 4-oxalocrotonate tautomerase (EC 5.3.2; 4OT), and four analogues prepared by total chemical synthesis. Wild-type 4OT is a hexamer of 62 amino acid subunits and contains no cysteine residues. The analogues were: (desPro1)4OT, a truncated construct in which Pro1 was deleted; (Cpc1)4OT in which Pro1 was replaced with cyclopentane carboxylate; a derivative [Met(O)45]4OT in which Met45 was oxidized to the sulfoxide; and an analogue (Nle45)4OT in which Met45 was replaced with norleucine. ESI of (Nle45)4OT, (Cpc1)4OT, and 4OT from solution conditions under which the native enzyme was fully active (5 mM ammonium bicarbonate buffer, pH 7.5) gave the intact hexamer as the major species detected by TOF mass spectrometry. In contrast, analysis of [Met(O)45]4OT and (desPro1)4OT under similar conditions yielded predominantly monomer ions. The ESI-TOF measurements were consistent with structural data obtained from circular dichroism spectroscopy. In the context of kinetic data collected for 4OT and these analogues, ESI-TOF mass spectrometry also provided important evidence for the structural and mechanistic significance of the catalytically important Pro1 residue in 4OT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since ribosomally mediated protein biosynthesis is confined to the L-amino acid pool, the presence of D-amino acids in peptides was considered for many years to be restricted to proteins of prokaryotic origin. Unicellular microorganisms have been responsible for the generation of a host of D-amino acid-containing peptide antibiotics (gramicidin, actinomycin, bacitracin, polymyxins). Recently, a series of mu and delta opioid receptor agonists [dermorphins and deltorphins] and neuroactive tetrapeptides containing a D-amino acid residue have been isolated from amphibian (frog) skin and mollusks. Amino acid sequences obtained from the cDNA libraries coincide with the observed dermorphin and deltorphin sequences, suggesting a stereospecific posttranslational amino acid isomerization of unknown mechanism. A cofactor-independent serine isomerase found in the venom of the Agelenopsis aperta spider provides the first major clue to explain how multicellular organisms are capable of incorporating single D-amino acid residues into these and other eukaryotic peptides. The enzyme is capable of isomerizing serine, cysteine, O-methylserine, and alanine residues in the middle of peptide chains, thereby providing a biochemical capability that, until now, had not been observed. Both D- and L-amino acid residues are susceptible to isomerization. The substrates share a common Leu-Xaa-Phe-Ala recognition site. Early in the reaction sequence, solvent-derived deuterium resides solely with the epimerized product (not substrate) in isomerizations carried out in 2H2O. Significant deuterium isotope effects are obtained in these reactions in addition to isomerizations of isotopically labeled substrates (2H at the epimerizeable serine alpha-carbon atom). The combined kinetic and structural data suggests a two-base mechanism in which abstraction of a proton from one face is concomitant with delivery from the opposite face by the conjugate acid of the second enzymic base.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A combined chemical and enzymatic procedure has been developed to synthesize macroscopic poly[(R)-(-)-3-hydroxybutyrate] (PHB) granules in vitro. The granules form in a matter of minutes when purified polyhydroxyalkanoate (PHA) synthase from Alcaligenes eutrophus is exposed to synthetically prepared (R)-3-hydroxybutyryl coenzyme A, thereby establishing the minimal requirements for PHB granule formation. The artificial granules are spherical with diameters of up to 3 microns and significantly larger than their native counterparts (0.5 micron). The isolated PHB was characterized by 1H and 13C NMR, gel-permeation chromatography, and chemical analysis. The in vitro polymerization system yields PHB with a molecular mass > 10 x 10(6) Da, exceeding by an order of magnitude the mass of PHAs typically extracted from microorganisms. We also demonstrate that the molecular mass of the polymer can be controlled by the initial PHA synthase concentration. Preliminary kinetic analysis of de novo granule formation confirms earlier findings of a lag time for the enzyme but suggests the involvement of an additional granule assembly step. Minimal requirements for substrate recognition were investigated. Since substrate analogs lacking the adenosine 3',5'-bisphosphate moiety of (R)-3-hydroxybutyryl coenzyme A were not accepted by the PHA synthase, we provide evidence that this structural element of the substrate is essential for catalysis.