3 resultados para Environmental information

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

To successfully navigate through the environment animals rely on information concerning their directional heading and location. Many cells within the postsubiculum and anterior thalamus discharge as a function of the animal’s head direction (HD), while many cells in the hippocampus discharge in relation to the animal’s location. We placed lesions in the hippocampus and recorded from HD cells in the postsubiculum and anterior thalamus. Lesions of the hippocampus did not disrupt the HD cell signal in either brain area, indicating that the HD cell signal must be generated by structures external to the hippocampus. In addition, each cell’s preferred firing direction remained stable across days when the lesioned animal was placed into a novel environment. This stability appeared to weaken after several weeks of nonexposure to the new enclosure for two out of five animals, and subsequently recorded cells from these two animals established a new angular relationship between the familiar and novel environments. Our results suggest that extra-hippocampal structures are capable of creating and maintaining a novel representation of the animal’s environmental context. This representation shares features in common with mnemonic processes involving episodic memory that until now were assumed to require an intact hippocampus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface reactive phases of soils and aquifers, comprised of phyllosilicate and metal oxohydroxide minerals along with humic substances, play a critical role in the regulation of contaminant fate and transport. Much of our knowledge concerning contaminant-mineral interactions at the molecular level, however, is derived from extensive experimentation on model mineral systems. Although these investigations have provided a foundation for understanding reactive surface functional groups on individual mineral phases, the information cannot be readily extrapolated to complex mineral assemblages in natural systems. Recent studies have elucidated the role of less abundant mineral and organic substrates as important surface chemical modifiers and have demonstrated complex coupling of reactivity between permanent-charge phyllosilicates and variable-charge Fe-oxohydroxide phases. Surface chemical modifiers were observed to control colloid generation and transport processes in surface and subsurface environments as well as the transport of solutes and ionic tracers. The surface charging mechanisms operative in the complex mineral assemblages cannot be predicted based on bulk mineralogy or by considering surface reactivity of less abundant mineral phases based on results from model systems. The fragile nature of mineral assemblages isolated from natural systems requires novel techniques and experimental approaches for investigating their surface chemistry and reactivity free of artifacts. A complete understanding of the surface chemistry of complex mineral assemblages is prerequisite to accurately assessing environmental and human health risks of contaminants or in designing environmentally sound, cost-effective chemical and biological remediation strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L-ascorbic acid (vitamin C) is a powerful reducing agent found in millimolar concentrations in plants, and is proposed to play an important role in scavenging free radicals in plants and animals. However, surprisingly little is known about the role of this antioxidant in plant environmental stress adaptation or ascorbate biosynthesis. We report the isolation of soz1, a semi-dominant ozone-sensitive mutant that accumulates only 30% of the normal ascorbate concentration. The results of genetic approaches and feeding studies show that the ascorbate concentration affects foliar resistance to the oxidizing gas ozone. Consistent with the proposed role for ascorbate in reactive oxygen species detoxification, lipid peroxides are elevated in soz1, but not in wild type following ozone fumigation. We show that the soz1 mutant is hypersensitive to both sulfur dioxide and ultraviolet B irradiation, thus implicating ascorbate in defense against varied environmental stresses. In addition to defining the first ascorbate deficient mutant in plants, these results indicate that screening for ozone-sensitive mutants is a powerful method for identifying physiologically important antioxidant mechanisms and signal transduction pathways. Analysis of soz1 should lead to more information about the physiological roles and metabolism of ascorbate.