9 resultados para Entrepreneurship. Entrepreneur. Locus of control. Entrepreneur behavior

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The genetic basis of sexual isolation that contributes to speciation is one of the unsolved questions in evolutionary biology. Drosophila ananassae and Drosophila pallidosa are closely related, and postmating isolation has not developed between them. However, females of both species discriminate their mating partners, and this discrimination contributes to strong sexual isolation between them. By using surgical treatments, we demonstrate that male courtship songs play a dominant role in female mate discrimination. The absence of the song of D. pallidosa dramatically increased interspecies mating with D. ananassae females but reduced intraspecies mating with D. pallidosa females. Furthermore, genetic analysis and chromosomal introgression by repeated backcrosses to D. pallidosa males identified possible loci that control female discrimination in each species. These loci were mapped on distinct positions near the Delta locus on the middle of the left arm of the second chromosome. Because the mate discrimination we studied is well developed and is the only known mechanism that prevents gene flow between them, these loci may have played crucial roles in the evolution of reproductive isolation, and therefore, in the speciation process between these two species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated mRNA 3′-end-processing signals in each of six eukaryotic species (yeast, rice, arabidopsis, fruitfly, mouse, and human) through the analysis of more than 20,000 3′-expressed sequence tags. The use and conservation of the canonical AAUAAA element vary widely among the six species and are especially weak in plants and yeast. Even in the animal species, the AAUAAA signal does not appear to be as universal as indicated by previous studies. The abundance of single-base variants of AAUAAA correlates with their measured processing efficiencies. As found previously, the plant polyadenylation signals are more similar to those of yeast than to those of animals, with both common content and arrangement of the signal elements. In all species examined, the complete polyadenylation signal appears to consist of an aggregate of multiple elements. In light of these and previous results, we present a broadened concept of 3′-end-processing signals in which no single exact sequence element is universally required for processing. Rather, the total efficiency is a function of all elements and, importantly, an inefficient word in one element can be compensated for by strong words in other elements. These complex patterns indicate that effective tools to identify 3′-end-processing signals will require more than consensus sequence identification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fungal pathogen Ustilago hordei causes the covered smut disease of barley and oats. Mating and pathogenicity in this fungus are controlled by the MAT locus, which contains two distinct gene complexes, a and b. In this study, we tagged the a and b regions with the recognition sequence for the restriction enzyme I-SceI and determined that the distance between the complexes is 500 kb in a MAT-1 strain and 430 kb in a MAT-2 strain. Characterization of the organization of the known genes within the a and b gene complexes provided evidence for nonhomology and sequence inversion between MAT-1 and MAT-2. Antibiotic-resistance markers also were used to tag the a gene complex in MAT-1 strains (phleomycin) and the b gene complex in MAT-2 strains (hygromycin). Crosses were performed with these strains and progeny resistant to both antibiotics were recovered at a very low frequency, suggesting that recombination is suppressed within the MAT region. Overall, the chromosome homologues carrying the MAT locus of U. hordei share features with primitive sex chromosomes, with the added twist that the MAT locus also controls pathogenicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patterns of variation at the Sod locus of Drosophila melanogaster suggest that the protein polymorphism at this locus has very recently arisen. In addition, it appears that a previously rare DNA variant has been recently and rapidly driven to intermediate frequency. From the size of the region (>20 kb) that has been swept along with this rare variant, and patterns of linkage disequilibrium in the region, it is inferred that strength of selection was large (s > 0.01) and that the sweep occurred more than 25,000 generations ago. In addition, there are striking similarities to patterns of variation observed at the Est6 and Est-P loci, which are located approximately 1,000 kb from Sod.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ga2 mutant of Arabidopsis thaliana is a gibberellin-deficient dwarf. Previous biochemical studies have suggested that the ga2 mutant is impaired in the conversion of copalyl diphosphate to ent-kaurene, which is catalyzed by ent-kaurene synthase (KS). Overexpression of the previously isolated KS cDNA from pumpkin (Cucurbita maxima) (CmKS) in the ga2 mutant was able to complement the mutant phenotype. A genomic clone coding for KS, AtKS, was isolated from A. thaliana using CmKS cDNA as a heterologous probe. The corresponding A. thaliana cDNA was isolated and expressed in Escherichia coli as a fusion protein. The fusion protein showed enzymatic activity that converted [3H]copalyl diphosphate to [3H]ent-kaurene. The recombinant AtKS protein derived from the ga2–1 mutant is truncated by 14 kD at the C-terminal end and does not contain significant KS activity in vitro. Sequence analysis revealed that a C-2099 to T base substitution, which converts Gln-678 codon to a stop codon, is present in the AtKS cDNA from the ga2–1 mutant. Taken together, our results show that the GA2 locus encodes KS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ureABC genes of Mycobacterium tuberculosis were cloned. By using a set of degenerate primers corresponding to a conserved region of the urease enzyme (EC 3.5.1.5), a fragment of the expected size was amplified by PCR and was used to screen a M. tuberculosis cosmid library. Three open reading frames with extensive similarity to the urease genes from other organisms were found. The locus was mapped on the chromosome, using an ordered M. tuberculosis cosmid library. A suicide vector containing a ureC gene disrupted by a kanamycin marker (aph) was used to construct a urease-negative Mycobacterium bovis bacillus Calmette-Guérin mutant by allelic exchange involving replacement of the ureC gene with the aph::ureC construct. To our knowledge, allelic exchange has not been reported previously in the slow-growing mycobacteria. Homologous recombination will be an invaluable genetic tool for deciphering the mechanisms of tuberculosis pathogenesis, a disease that causes 3 x 10(6) deaths a year worldwide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have employed Arabidopsis thaliana as a model host plant to genetically dissect the molecular pathways leading to disease resistance. A. thaliana accession Col-0 is susceptible to the bacterial pathogen Pseudomonas syringae pv. tomato strain DC3000 but resistant in a race-specific manner to DC3000 carrying any one of the cloned avirulence genes avrB, avrRpm1, avrRpt2, and avrPph3. Fast-neutron-mutagenized Col-0 M2 seed was screened to identify mutants susceptible to DC3000(avrB). Disease assays and analysis of in planta bacterial growth identified one mutant, ndr1-1 (nonrace-specific disease resistance), that was susceptible to DC3000 expressing any one of the four avirulence genes tested. Interestingly, a hypersensitive-like response was still induced by several of the strains. The ndr1-1 mutation also rendered the plant susceptible to several avirulent isolates of the fungal pathogen Peronospora parasitica. Genetic analysis of ndr1-1 demonstrated that the mutation segregated as a single recessive locus, located on chromosome III. Characterization of the ndr1-1 mutation suggests that a common step exists in pathways of resistance to two unrelated pathogens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biosynthesis of gibberellins (GAs) after GA12-aldehyde involves a series of oxidative steps that lead to the formation of bioactive GAs. Previously, a cDNA clone encoding a GA 20-oxidase [gibberellin, 2-oxoglutarate:oxygen oxidoreductase (20-hydroxylating, oxidizing), EC 1.14.11.-] was isolated by immunoscreening a cDNA library from liquid endosperm of pumpkin (Cucurbita maxima L.) with antibodies against partially purified GA 20-oxidase. Here, we report isolation of a genomic clone for GA 20-oxidase from a genomic library of the long-day species Arabidopsis thaliana Heynh., strain Columbia, by using the pumpkin cDNA clone as a heterologous probe. This genomic clone contains a GA 20-oxidase gene that consists of three exons and two introns. The three exons are 1131-bp long and encode 377 amino acid residues. A cDNA clone corresponding to the putative GA 20-oxidase genomic sequence was constructed with the reverse transcription-PCR method, and the identity of the cDNA clone was confirmed by analyzing the capability of the fusion protein expressed in Escherichia coli to convert GA53 to GA44 and GA19 to GA20. The Arabidopsis GA 20-oxidase shares 55% identity and > 80% similarity with the pumpkin GA 20-oxidase at the derived amino acid level. Both GA 20-oxidases share high homology with other 2-oxoglutarate-dependent dioxygenases (2-ODDs), but the highest homology was found between the two GA 20-oxidases. Mapping results indicated tight linkage between the cloned GA 20-oxidase and the GA5 locus of Arabidopsis. The ga5 semidwarf mutant contains a G-->A point mutation that inserts a translational stop codon in the protein-coding sequence, thus confirming that the GA5 locus encodes GA 20-oxidase. Expression of the GA5 gene in Ara-bidopsis leaves was enhanced after plants were transferred from short to long days; it was reduced by GA4 treatment, suggesting end-product repression in the GA biosynthetic pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the rare examples of a single major gene underlying a naturally occurring behavioral polymorphism is the foraging locus of Drosophila melanogaster. Larvae with the rover allele, forR, have significantly longer foraging path lengths on a yeast paste than do those homozygous for the sitter allele, fors. These variants do not differ in general activity in the absence of food. The evolutionary significance of this polymorphism is not as yet understood. Here we examine the effect of high and low animal rearing densities on the larval foraging path-length phenotype and show that density-dependent natural selection produces changes in this trait. In three unrelated base populations the long path (rover) phenotype was selected for under high-density rearing conditions, whereas the short path (sitter) phenotype was selected for under low-density conditions. Genetic crosses suggested that these changes resulted from alterations in the frequency of the fors allele in the low-density-selected lines. Further experiments showed that density-dependent selection during the larval stage rather than the adult stage of development was sufficient to explain these results. Density-dependent mechanisms may be sufficient to maintain variation in rover and sitter behavior in laboratory populations.