2 resultados para Engineering design -- Study and teaching (Higher)

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protease-activated receptors (PARs) represent a unique family of seven-transmembrane G protein-coupled receptors, which are enzymatically cleaved to expose a truncated extracellular N terminus that acts as a tethered activating ligand. PAR-1 is cleaved and activated by the serine protease α-thrombin, is expressed in various tissues (e.g., platelets and vascular cells), and is involved in cellular responses associated with hemostasis, proliferation, and tissue injury. We have discovered a series of potent peptide-mimetic antagonists of PAR-1, exemplified by RWJ-56110. Spatial relationships between important functional groups of the PAR-1 agonist peptide epitope SFLLRN were employed to design and synthesize candidate ligands with appropriate groups attached to a rigid molecular scaffold. Prototype RWJ-53052 was identified and optimized via solid-phase parallel synthesis of chemical libraries. RWJ-56110 emerged as a potent, selective PAR-1 antagonist, devoid of PAR-1 agonist and thrombin inhibitory activity. It binds to PAR-1, interferes with PAR-1 calcium mobilization and cellular function (platelet aggregation; cell proliferation), and has no effect on PAR-2, PAR-3, or PAR-4. By flow cytometry, RWJ-56110 was confirmed as a direct inhibitor of PAR-1 activation and internalization, without affecting N-terminal cleavage. At high concentrations of α-thrombin, RWJ-56110 fully blocked activation responses in human vascular cells, albeit not in human platelets; whereas, at high concentrations of SFLLRN-NH2, RWJ-56110 blocked activation responses in both cell types. Thus, thrombin activates human platelets independently of PAR-1, i.e., through PAR-4, which we confirmed by PCR analysis. Selective PAR-1 antagonists, such as RWJ-56110, should serve as useful tools to study PARs and may have therapeutic potential for treating thrombosis and restenosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the construction of a synthetic flavo-heme protein that incorporates two major physiological activities of flavoproteins: light activation of flavin analogous to DNA photolyase and rapid intramolecular electron transfer between the flavin and heme cofactors as in several oxidoreductases. The functional tetra-α-helix protein comprises two 62-aa helix-loop-helix subunits. Each subunit contains a single cysteine to which flavin (7-acetyl-10-methylisoalloxazine) is covalently attached and two histidines appropriately positioned for bis-his coordination of heme cofactors. Both flavins and hemes are situated within the hydrophobic core of the protein. Intramolecular electron transfer from flavosemiquinone generated by photoreduction from a sacrificial electron donor in solution was examined between protoporphyrin IX and 1-methyl-2-oxomesoheme XIII. Laser pulse-activated electron transfer from flavin to meso heme occurs on a 100-ns time scale, with a favorable free energy of approximately −100 meV. Electron transfer from flavin to the lower potential protoporphyrin IX, with an unfavorable free energy, can be induced after a lag phase under continuous light illumination. Thus, the supporting peptide matrix provides an excellent framework for the positioning of closely juxtaposed redox groups capable of facilitating intramolecular electron transfer and begins to clarify in a simplified and malleable system the natural engineering of flavoproteins.