23 resultados para Engineered wood
em National Center for Biotechnology Information - NCBI
Resumo:
Organization of transgenes in rice transformed through direct DNA transfer strongly suggests a two-phase integration mechanism. In the “preintegration” phase, transforming plasmid molecules (either intact or partial) are spliced together. This gives rise to rearranged transgenic sequences, which upon integration do not contain any interspersed plant genomic sequences. Subsequently, integration of transgenic DNA into the host genome is initiated. Our experiments suggest that the original site of integration acts as a hot spot, facilitating subsequent integration of successive transgenic molecules at the same locus. The resulting transgenic locus may have plant DNA separating the transgenic sequences. Our data indicate that transformation through direct DNA transfer, specifically particle bombardment, generally results in a single transgenic locus as a result of this two-phase integration mechanism. Transgenic plants generated through such processes may, therefore, be more amenable to breeding programs as the single transgenic locus will be easier to characterize genetically. Results from direct DNA transfer experiments suggest that in the absence of protein factors involved in exogenous DNA transfer through Agrobacterium, the qualitative and/or quantitative efficiency of transformation events is not compromised. Our results cast doubt on the role of Agrobacterium vir genes in the integration process.
Resumo:
A myelin basic protein (MBP)-specific BALB/c T helper 1 (Th1) clone was transduced with cDNA for murine latent transforming growth factor-β1 (TGF-β1) by coculture with fibroblasts producing a genetically engineered retrovirus. When SJL x BALB/c F1 mice, immunized 12–15 days earlier with proteolipid protein in complete Freund’s adjuvant, were injected with 3 × 106 cells from MBP-activated untransduced cloned Th1 cells, the severity of experimental allergic encephalomyelitis (EAE) was slightly increased. In contrast, MBP-activated (but not resting) latent TGF-β1-transduced T cells significantly delayed and ameliorated EAE development. This protective effect was negated by simultaneously injected anti-TGF-β1. The transduced cells secreted 2–4 ng/ml of latent TGF-β1 into their culture medium, whereas control cells secreted barely detectable amounts. mRNA profiles for tumor necrosis factor, lymphotoxin, and interferon-γ were similar before and after transduction; interleukin-4 and -10 were absent. TGF-β1-transduced and antigen-activated BALB/c Th1 clones, specific for hemocyanin or ovalbumin, did not ameliorate EAE. Spinal cords from mice, taken 12 days after receiving TGF-β1-transduced, antigen-activated cells, contained detectable amounts of TGF-β1 cDNA. We conclude that latent TGF-β1-transduced, self-reactive T cell clones may be useful in the therapy of autoimmune diseases.
Resumo:
Individuals with hemophilia A require frequent infusion of preparations of coagulation factor VIII. The activity of factor VIII (FVIII) as a cofactor for factor IXa in the coagulation cascade is limited by its instability after activation by thrombin. Activation of FVIII occurs through proteolytic cleavage and generates an unstable FVIII heterotrimer that is subject to rapid dissociation of its subunits. In addition, further proteolytic cleavage by thrombin, factor Xa, factor IXa, and activated protein C can lead to inactivation. We have engineered and characterized a FVIII protein, IR8, that has enhanced in vitro stability of FVIII activity due to resistance to subunit dissociation and proteolytic inactivation. FVIII was genetically engineered by deletion of residues 794-1689 so that the A2 domain is covalently attached to the light chain. Missense mutations at thrombin and activated protein C inactivation cleavage sites provided resistance to proteolysis, resulting in a single-chain protein that has maximal activity after a single cleavage after arginine-372. The specific activity of partially purified protein produced in transfected COS-1 monkey cells was 5-fold higher than wild-type (WT) FVIII. Whereas WT FVIII was inactivated by thrombin after 10 min in vitro, IR8 still retained 38% of peak activity after 4 hr. Whereas binding of IR8 to von Willebrand factor (vWF) was reduced 10-fold compared with WT FVIII, in the presence of an anti-light chain antibody, ESH8, binding of IR8 to vWF increased 5-fold. These results demonstrate that residues 1690–2332 of FVIII are sufficient to support high-affinity vWF binding. Whereas ESH8 inhibited WT factor VIII activity, IR8 retained its activity in the presence of ESH8. We propose that resistance to A2 subunit dissociation abrogates inhibition by the ESH8 antibody. The stable FVIIIa described here provides the opportunity to study the activated form of this critical coagulation factor and demonstrates that proteins can be improved by rationale design through genetic engineering technology.
Resumo:
We conducted a Phase I clinical trial investigating the biologic activity of vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte–macrophage colony-stimulating factor in patients with metastatic melanoma. Immunization sites were intensely infiltrated with T lymphocytes, dendritic cells, macrophages, and eosinophils in all 21 evaluable patients. Although metastatic lesions resected before vaccination were minimally infiltrated with cells of the immune system in all patients, metastatic lesions resected after vaccination were densely infiltrated with T lymphocytes and plasma cells and showed extensive tumor destruction (at least 80%), fibrosis, and edema in 11 of 16 patients examined. Antimelanoma cytotoxic T cell and antibody responses were associated with tumor destruction. These results demonstrate that vaccination with irradiated autologous melanoma cells engineered to secrete granulocyte–macrophage colony-stimulating factor stimulates potent antitumor immunity in humans with metastatic melanoma.
Resumo:
A rapidly growing area of genome research is the generation of expressed sequence tags (ESTs) in which large numbers of randomly selected cDNA clones are partially sequenced. The collection of ESTs reflects the level and complexity of gene expression in the sampled tissue. To date, the majority of plant ESTs are from nonwoody plants such as Arabidopsis, Brassica, maize, and rice. Here, we present a large-scale production of ESTs from the wood-forming tissues of two poplars, Populus tremula L. × tremuloides Michx. and Populus trichocarpa ‘Trichobel.’ The 5,692 ESTs analyzed represented a total of 3,719 unique transcripts for the two cDNA libraries. Putative functions could be assigned to 2,245 of these transcripts that corresponded to 820 protein functions. Of specific interest to forest biotechnology are the 4% of ESTs involved in various processes of cell wall formation, such as lignin and cellulose synthesis, 5% similar to developmental regulators and members of known signal transduction pathways, and 2% involved in hormone biosynthesis. An additional 12% of the ESTs showed no significant similarity to any other DNA or protein sequences in existing databases. The absence of these sequences from public databases may indicate a specific role for these proteins in wood formation. The cDNA libraries and the accompanying database are valuable resources for forest research directed toward understanding the genetic control of wood formation and future endeavors to modify wood and fiber properties for industrial use.
Resumo:
To test a different approach to understanding the relationship between the sequence of part of a protein and its conformation in the overall folded structure, the amino acid sequence corresponding to an α-helix of T4 lysozyme was duplicated in tandem. The presence of such a sequence repeat provides the protein with “choices” during folding. The mutant protein folds with almost wild-type stability, is active, and crystallizes in two different space groups, one isomorphous with wild type and the other with two molecules in the asymmetric unit. The fold of the mutant is essentially the same in all cases, showing that the inserted segment has a well-defined structure. More than half of the inserted residues are themselves helical and extend the helix present in the wild-type protein. Participation of additional duplicated residues in this helix would have required major disruption of the parent structure. The results clearly show that the residues within the duplicated sequence tend to maintain a helical conformation even though the packing interactions with the remainder of the protein are different from those of the original helix. It supports the hypothesis that the structures of individual α-helices are determined predominantly by the nature of the amino acids within the helix, rather than the structural environment provided by the rest of the protein.
Resumo:
Rapid imaging by antitumor antibodies has been limited by the prolonged targeting kinetics and clearance of labeled whole antibodies. Genetically engineered fragments with rapid access and high retention in tumor tissue combined with rapid blood clearance are suitable for labeling with short-lived radionuclides, including positron-emitting isotopes for positron-emission tomography (PET). An engineered fragment was developed from the high-affinity anticarcinoembryonic antigen (CEA) monoclonal antibody T84.66. This single-chain variable fragment (Fv)-CH3, or minibody, was produced as a bivalent 80 kDa dimer. The macrocyclic chelating agent 1,4,7,10-tetraazacyclododecane-N,N′,N′′, N′′′-tetraacetic acid (DOTA) was conjugated to the anti-CEA minibody for labeling with copper-64, a positron-emitting radionuclide (t1/2 = 12.7 h). In vivo distribution was evaluated in athymic mice bearing paired LS174T human colon carcinoma (CEA positive) and C6 rat glioma (CEA negative) xenografts. Five hours after injection with 64Cu-DOTA-minibody, microPET imaging showed high uptake in CEA-positive tumor (17.9% injected dose per gram ± 3.79) compared with control tumor (6.0% injected dose per gram ± 1.0). In addition, significant uptake was seen in liver, with low uptake in other tissues. Average target/background ratios relative to neighboring tissue were 3–4:1. Engineered antibody fragments labeled with positron-emitting isotopes such as copper-64 provide a new class of agents for PET imaging of tumors.
Resumo:
FKBP ligand homodimers can be used to activate signaling events inside cells and animals that have been engineered to express fusions between appropriate signaling domains and FKBP. However, use of these dimerizers in vivo is potentially limited by ligand binding to endogenous FKBP. We have designed ligands that bind specifically to a mutated FKBP over the wild-type protein by remodeling an FKBP-ligand interface to introduce a specificity binding pocket. A compound bearing an ethyl substituent in place of a carbonyl group exhibited sub-nanomolar affinity and 1,000-fold selectivity for a mutant FKBP with a compensating truncation of a phenylalanine residue. Structural and functional analysis of the new pocket showed that recognition is surprisingly relaxed, with the modified ligand only partially filling the engineered cavity. We incorporated the specificity pocket into a fusion protein containing FKBP and the intracellular domain of the Fas receptor. Cells expressing this modified chimeric protein potently underwent apoptosis in response to AP1903, a homodimer of the modified ligand, both in culture and when implanted into mice. Remodeled dimerizers such as AP1903 are ideal reagents for controlling the activities of cells that have been modified by gene therapy procedures, without interference from endogenous FKBP.
Resumo:
Cyclin D1 is expressed at abnormally high levels in many cancers and has been specifically implicated in the development of breast cancer. In this report we have extensively analyzed the cyclin D1 promoter in a variety of cancer cell lines that overexpress the protein and identified two critical regulatory elements (CREs), a previously identified CRE at –52 and a novel site at –30. In vivo footprinting experiments demonstrated factors binding at both sites. We have used a novel DNA-binding ligand, GL020924, to target the site at –30 (–30–21) of the cyclin D1 promoter in MCF7 breast cancer cells. A binding site for this novel molecule was constructed by mutating 2 bp of the wild-type cyclin D1 promoter at the –30–21 site. Treatment with GL020924 specifically inhibited expression of the targeted cyclin D1 promoter construct in MCF7 cells in a concentration-dependent manner, thus validating the –30–21 site as a target for minor groove-binding ligands. In addition, this result validates our approach to regulating the expression of genes implicated in disease by targeting small DNA-binding ligands to key regulatory elements in the promoters of those genes.
Resumo:
To visualize Ca2+-dependent protein–protein interactions in living cells by fluorescence readouts, we used a circularly permuted green fluorescent protein (cpGFP), in which the amino and carboxyl portions had been interchanged and reconnected by a short spacer between the original termini. The cpGFP was fused to calmodulin and its target peptide, M13. The chimeric protein, which we have named “pericam,” was fluorescent and its spectral properties changed reversibly with the amount of Ca2+, probably because of the interaction between calmodulin and M13 leading to an alteration of the environment surrounding the chromophore. Three types of pericam were obtained by mutating several amino acids adjacent to the chromophore. Of these, “flash-pericam” became brighter with Ca2+, whereas “inverse-pericam” dimmed. On the other hand, “ratiometric-pericam” had an excitation wavelength changing in a Ca2+-dependent manner. All of the pericams expressed in HeLa cells were able to monitor free Ca2+ dynamics, such as Ca2+ oscillations in the cytosol and the nucleus. Ca2+ imaging using high-speed confocal line-scanning microscopy and a flash-pericam allowed to detect the free propagation of Ca2+ ions across the nuclear envelope. Then, free Ca2+ concentrations in the nucleus and mitochondria were simultaneously measured by using ratiometric-pericams having appropriate localization signals, revealing that extra-mitochondrial Ca2+ transients caused rapid changes in the concentration of mitochondrial Ca2+. Finally, a “split-pericam” was made by deleting the linker in the flash-pericam. The Ca2+-dependent interaction between calmodulin and M13 in HeLa cells was monitored by the association of the two halves of GFP, neither of which was fluorescent by itself.
Resumo:
Techniques of tissue engineering and cell and molecular biology were used to create a biodegradable scaffold for transfected cells to produce complex proteins. Mullerian Inhibiting Substance (MIS) causes regression of Mullerian ducts in the mammalian embryo. MIS also causes regression in vitro of ovarian tumor cell lines and primary cells from ovarian carcinomas, which derive from Mullerian structures. In a strategy to circumvent the complicated purification protocols for MIS, Chinese hamster ovary cells transfected with the human MIS gene were seeded onto biodegradable polymers of polyglycolic acid fibers and secretion of MIS confirmed. The polymer-cell graft was implanted into the right ovarian pedicle of severe combined immunodeficient mice. Serum MIS in the mice rose to supraphysiologic levels over time. One week after implantation of the polymer-cell graft, IGROV-1 human tumors were implanted under the renal capsule of the left kidney. Growth of the IGROV-1 tumors was significantly inhibited in the animals with a polymer-cell graft of MIS-producing cells, compared with controls. This novel MIS delivery system could have broader applications for other inhibitory agents not amenable to efficient purification and provides in vivo evidence for a role of MIS in the treatment of ovarian cancer.
Resumo:
Homologous sense suppression of a gene encoding lignin pathway caffeic acid O-methyltransferase (CAOMT) in the xylem of quaking aspen (Populus tremuloides Michx.) resulted in transgenic plants exhibiting novel phenotypes with either mottled or complete red-brown coloration in their woody stems. These phenotypes appeared in all independent transgenic lines regenerated with a sense CAOMT construct but were absent from all plants produced with antisense CAOMT. The CAOMT sense transgene expression was undetectable, and the endogenous CAOMT transcript levels and enzyme activity were reduced in the xylem of some transgenic lines. In contrast, the sense transgene conferred overexpression of CAOMT and significant CAOMT activity in all of the transgenic plants' leaves and sclerenchyma, where normally the expression of the endogenous CAOMT gene is negligible. Thus, our results support the notion that the occurrence of sense cosuppression depends on the degree of sequence homology and endogene expression. Furthermore, the suppression of CAOMT in the xylem resulted in the incorporation of a higher amount of coniferyl aldehyde residues into the lignin in the wood of the sense plants. Characterization of the lignins isolated from these transgenic plants revealed that a high amount of coniferyl aldehyde is the origin of the red-brown coloration—a phenotype correlated with CAOMT-deficient maize (Zea mays L.) brown-midrib mutants.
Resumo:
Due to lack of effective therapy, primary brain tumors are the focus of intense investigation of novel experimental approaches that use vectors and recombinant viruses. Therapeutic approaches have been both indirect, whereby vectors are used, or direct to allow for direct cell killing by the introduced virus. Genetically engineered herpes simplex viruses are currently being evaluated as an experimental approach to eradicate malignant human gliomas. Initial studies with gamma (1)34.5 mutants, R3616 (from which both copies of the gamma (1)34.5 gene have been deleted) and R4009 (a construct with two stop codons inserted into the gamma (1)34.5 gene), have been assessed. In a syngeneic scid mouse intracranial tumor model, recombinant herpes simplex virus can be experimentally used for the treatment of brain tumors. These viruses and additional engineered viruses were subsequently tested in human glioma cells both in vitro and in vivo. Using a xenogeneic scid mouse intracranial glioma model, R4009 therapy of established tumors significantly prolonged survival. Most importantly, long-term survival was achieved, with histologic evidence that R4009 eradicated intracranial tumors in this model. Furthermore, the opportunity to evaluate gamma (1)34.5 mutants that have enhanced oncolytic activity, e.g., R8309 where the carboxyl terminus of the gamma (1)34.5 gene has been replaced by the murine homologue, MyD116, are considered.
Resumo:
Vaccinia virus, no longer required for immunization against smallpox, now serves as a unique vector for expressing genes within the cytoplasm of mammalian cells. As a research tool, recombinant vaccinia viruses are used to synthesize and analyze the structure-function relationships of proteins, determine the targets of humoral and cell-mediated immunity, and investigate the types of immune response needed for protection against specific infectious diseases and cancer. The vaccine potential of recombinant vaccinia virus has been realized in the form of an effective oral wild-life rabies vaccine, although no product for humans has been licensed. A genetically altered vaccinia virus that is unable to replicate in mammalian cells and produces diminished cytopathic effects retains the capacity for high-level gene expression and immunogenicity while promising exceptional safety for laboratory workers and potential vaccine recipients.
Resumo:
Green fluorescent protein (GFP) is widely used as a reporter gene in both prokaryotes and eukaryotes. However, the fluorescence levels of wild-type GFP (wtGFP) are not bright enough for fluorescence-activated cell sorting or flow cytometry. Several GFP variants were generated that are brighter or have altered excitation spectra when expressed in prokaryotic cells. We engineered two GFP genes with different combinations of these mutations, GFP(S65T,V163A) termed GFP-Bex1, and GFP(S202F,T203I,V163A) termed GFP-Vex1. Both show enhanced brightness and improved signal-to-noise ratios when expressed in mammalian cells and appropriately excited, compared with wtGFP. Each mutant retains only one of the two excitation peaks of the wild-type protein. GFP-Bex1 excites at 488 nm (blue) and GFP-Vex1 excites at 406 nm (violet), both of which are available laser lines. Excitation at these wavelengths allows for the independent analyses of these mutants by fluorescence-activated cell sorting, permitting simultaneous, quantitative detection of expression from two different genes within single mammalian cells.