2 resultados para Enamel and enameling
em National Center for Biotechnology Information - NCBI
Resumo:
Tham Khuyen Cave (Lang Son Province, northern Vietnam) is one of the more significant sites to yield fossil vertebrates in east Asia. During the mid-1960s, excavation in a suite of deposits produced important hominoid dental remains of middle Pleistocene age. We undertake more rigorous analyses of these sediments to understand the fluvial dynamics of Pleistocene cave infilling as they determine how skeletal elements accumulate within Tham Khuyen and other east Asian sites. Uranium/thorium series analysis of speleothems brackets the Pleistocene chronology for breaching, infilling, and exhuming the regional paleokarst. Clast analysis indicates sedimentary constituents, including hominoid teeth and cranial fragments accumulated from very short distances and under low fluvial energy. Electron spin resonance analysis of vertebrate tooth enamel and sediments shows that the main fossil-bearing suite (S1-S3) was deposited about 475 thousand years ago. Among the hominoid teeth excavated from S1-S3, some represent Homo erectus and Gigantopithecus blacki. Criteria are defined to differentiate these teeth from more numerous Pongo pygmaeus elements. The dated co-occurrence of Homo erectus and Gigantopithecus blacki at Tham Khuyen helps to establish the long co-existence of these two species throughout east Asia during the Early and Middle Pleistocene.
Resumo:
Himalayacetus subathuensis is a new pakicetid archaeocete from the Subathu Formation of northern India. The type dentary has a small mandibular canal indicating a lack of auditory specializations seen in more advanced cetaceans, and it has Pakicetus-like molar teeth suggesting that it fed on fish. Himalayacetus is significant because it is the oldest archaeocete known and because it was found in marine strata associated with a marine fauna. Himalayacetus extends the fossil record of whales about 3.5 million years back in geological time, to the middle part of the early Eocene [≈53.5 million years ago (Ma)]. Oxygen in the tooth-enamel phosphate has an isotopic composition intermediate between values reported for freshwater and marine archaeocetes, indicating that Himalayacetus probably spent some time in both environments. When the temporal range of Archaeoceti is calibrated radiometrically, comparison of likelihoods constrains the time of origin of Archaeoceti and hence Cetacea to about 54–55 Ma (beginning of the Eocene), whereas their divergence from extant Artiodactyla may have been as early as 64–65 Ma (beginning of the Cenozoic).