4 resultados para Emergent Literacy
em National Center for Biotechnology Information - NCBI
Resumo:
Because it is widely accepted that providing information online will play a major role in both the teaching and practice of medicine in the near future, a short formal course of instruction in computer skills was proposed for the incoming class of students entering medical school at the State University of New York at Stony Brook. The syllabus was developed on the basis of a set of expected outcomes, which was accepted by the dean of medicine and the curriculum committee for classes beginning in the fall of 1997. Prior to their arrival, students were asked to complete a self-assessment survey designed to elucidate their initial skill base; the returned surveys showed students to have computer skills ranging from complete novice to that of a systems engineer. The classes were taught during the first three weeks of the semester to groups of students separated on the basis of their knowledge of and comfort with computers. Areas covered included computer basics, e-mail management, MEDLINE, and Internet search tools. Each student received seven hours of hands-on training followed by a test. The syllabus and emphasis of the classes were tailored to the initial skill base but the final test was given at the same level to all students. Student participation, test scores, and course evaluations indicated that this noncredit program was successful in achieving an acceptable level of comfort in using a computer for almost all of the student body.
Resumo:
A simple evolutionary process can discover sophisticated methods for emergent information processing in decentralized spatially extended systems. The mechanisms underlying the resulting emergent computation are explicated by a technique for analyzing particle-based logic embedded in pattern-forming systems. Understanding how globally coordinated computation can emerge in evolution is relevant both for the scientific understanding of natural information processing and for engineering new forms of parallel computing systems.
Resumo:
The rhythmogenesis of 10-Hz sleep spindles is studied in a large-scale thalamic network model with two cell populations: the excitatory thalamocortical (TC) relay neurons and the inhibitory nucleus reticularis thalami (RE) neurons. Spindle-like bursting oscillations emerge naturally from reciprocal interactions between TC and RE neurons. We find that the network oscillations can be synchronized coherently, even though the RE-TC connections are random and sparse, and even though individual neurons fire rebound bursts intermittently in time. When the fast gamma-aminobutyrate type A synaptic inhibition is blocked, synchronous slow oscillations resembling absence seizures are observed. Near-maximal network synchrony is established with even modest convergence in the RE-to-TC projection (as few as 5-10 RE inputs per TC cell suffice). The hyperpolarization-activated cation current (Ih) is found to provide a cellular basis for the intermittency of rebound bursting that is commonly observed in TC neurons during spindles. Such synchronous oscillations with intermittency can be maintained only with a significant degree of convergence for the TC-to-RE projection.