3 resultados para Elevated Plus Maze
em National Center for Biotechnology Information - NCBI
Resumo:
Orphanin FQ (OFQ, Nociceptin) is a recently discovered 17-amino acid neuropeptide that is structurally related to the opioid peptides but does not bind opioid receptors. OFQ has been proposed to act as an anti-opioid peptide, but its widespread sites of action in the brain suggest that it may have more general functions. Here we show that OFQ plays an important role in higher brain functions because it can act as an anxiolytic to attenuate the behavioral inhibition of animals acutely exposed to stressful/anxiogenic environmental conditions. OFQ anxiolytic-like effects were consistent across several behavioral paradigms generating different types of anxiety states in animals (light-dark preference, elevated plus-maze, exploratory behavior of an unfamiliar environment, pharmacological anxiogenesis, operant conflict) and were observed at low nonsedating doses (0.1–3 nmol, intracerebroventricular). Like conventional anxiolytics, OFQ interfered with regular sensorimotor function at high doses (>3 nmol). Our results show that an important role of OFQ is to act as an endogenous regulator of acute anxiety responses. OFQ, probably in concert with other major neuropeptides, exerts a modulatory role on the central integration of stressful stimuli and, thereby, may modulate anxiety states generated by acute stress.
Resumo:
Protracted administration of diazepam elicits tolerance, whereas discontinuation of treatment results in signs of dependence. Tolerance to the anticonvulsant action of diazepam is present in an early phase (6, 24, and 36 h) but disappears in a late phase (72–96 h) of withdrawal. In contrast, signs of dependence such as decrease in open-arm entries on an elevated plus-maze and increased susceptibility to pentylenetetrazol-induced seizures were apparent 96 h (but not 12, 24, or 48 h) after diazepam withdrawal. During the first 72 h of withdrawal, tolerance is associated with changes in the expression of GABAA (γ-aminobutyric acid type A) receptor subunits (decrease in γ2 and α1; increase in α5) and with an increase of mRNA expression of the most abundant form of glutamic acid decarboxylase (GAD), GAD67. In contrast, dl-α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor GluR1 subunit mRNA and cognate protein, which are normal during the early phase of diazepam withdrawal, increase by approximately 30% in cortex and hippocampus in association with the appearance of signs of dependence 96 h after diazepam withdrawal. Immunohistochemical studies of GluR1 subunit expression with gold-immunolabeling technique reveal that the increase of GluR1 subunit protein is localized to layer V pyramidal neurons and their apical dendrites in the cortex, and to pyramidal neurons and in their dendritic fields in hippocampus. The results suggest an involvement of GABA-mediated processes in the development and maintenance of tolerance to diazepam, whereas excitatory amino acid-related processes (presumably via AMPA receptors) may be involved in the expression of signs of dependence after withdrawal.
Resumo:
The brain serotonin (5-hydroxytryptamine; 5-HT) system is a powerful modulator of emotional processes and a target of medications used in the treatment of psychiatric disorders. To evaluate the contribution of serotonin 5-HT1A receptors to the regulation of these processes, we have used gene-targeting technology to generate 5-HT1A receptor-mutant mice. These animals lack functional 5-HT1A receptors as indicated by receptor autoradiography and by resistance to the hypothermic effects of the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). Homozygous mutants display a consistent pattern of responses indicative of elevated anxiety levels in open-field, elevated-zero maze, and novel-object assays. Moreover, they exhibit antidepressant-like responses in a tail-suspension assay. These results indicate that the targeted disruption of the 5-HT1A receptor gene leads to heritable perturbations in the serotonergic regulation of emotional state. 5-HT1A receptor-null mutant mice have potential as a model for investigating mechanisms through which serotonergic systems modulate affective state and mediate the actions of psychiatric drugs.