11 resultados para Electrical transport properties

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The threshold behavior of the transport properties of a random metal in the critical region near a metal–insulator transition is strongly affected by the measuring electromagnetic fields. In spite of the randomness, the electrical conductivity exhibits striking phase-coherent effects due to broken symmetry, which greatly sharpen the transition compared with the predictions of effective medium theories, as previously explained for electrical conductivities. Here broken symmetry explains the sign reversal of the T → 0 magnetoconductance of the metal–insulator transition in Si(B,P), also previously not understood by effective medium theories. Finally, the symmetry-breaking features of quantum percolation theory explain the unexpectedly very small electrical conductivity temperature exponent α = 0.22(2) recently observed in Ni(S,Se)2 alloys at the antiferromagnetic metal–insulator transition below T = 0.8 K.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent experimental data on the conductivity σ+(T), T → 0, on the metallic side of the metal–insulator transition in ideally random (neutron transmutation-doped) 70Ge:Ga have shown that σ+(0) ∝ (N − Nc)μ with μ = ½, confirming earlier ultra-low-temperature results for Si:P. This value is inconsistent with theoretical predictions based on diffusive classical scaling models, but it can be understood by a quantum-directed percolative filamentary amplitude model in which electronic basis states exist which have a well-defined momentum parallel but not normal to the applied electric field. The model, which is based on a new kind of broken symmetry, also explains the anomalous sign reversal of the derivative of the temperature dependence in the critical regime.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bile secretion involves the structural and functional interplay of hepatocytes and cholangiocytes, the cells lining the intrahepatic bile ducts. Hepatocytes actively secrete bile acids into the canalicular space and cholangiocytes then transport bile acids in a vectorial manner across their apical and basolateral plasma membranes. The initial step in the transepithelial transport of bile acids across rat cholangiocytes is apical uptake by a Na+-dependent bile acid transporter (ASBT). To date, the molecular basis of the obligate efflux mechanism for extrusion of bile acids across the cholangiocyte basolateral membrane remains unknown. We have identified an exon-2 skipped, alternatively spliced form of ASBT, designated t-ASBT, expressed in rat cholangiocytes, ileum, and kidney. Alternative splicing causes a frameshift that produces a 154-aa protein. Antipeptide antibodies detected the ≈19 kDa t-ASBT polypeptide in rat cholangiocytes, ileum, and kidney. The t-ASBT was specifically localized to the basolateral domain of cholangiocytes. Transport studies in Xenopus oocytes revealed that t-ASBT can function as a bile acid efflux protein. Thus, alternative splicing changes the cellular targeting of ASBT, alters its functional properties, and provides a mechanism for rat cholangiocytes and other bile acid-transporting epithelia to extrude bile acids. Our work represents an example in which a single gene appears to encode via alternative splicing both uptake and obligate efflux carriers in a bile acid-transporting epithelial cell.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have micromachined a silicon-chip device that transports DNA with a Brownian ratchet that rectifies the Brownian motion of microscopic particles. Transport properties for a DNA 50-mer agree with theoretical predictions, and the DNA diffusion constant agrees with previous experiments. This type of micromachine could provide a generic pump or separation component for DNA or other charged species as part of a microscale lab-on-a-chip. A device with reduced feature size could produce a size-based separation of DNA molecules, with applications including the detection of single-nucleotide polymorphisms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A second isoform of the human vesicular monoamine transporter (hVMAT) has been cloned from a pheochromocytoma cDNA library. The contribution of the two transporter isoforms to monoamine storage in human neuroendocrine tissues was examined with isoform-specific polyclonal antibodies against hVMAT1 and hVMAT2. Central, peripheral, and enteric neurons express only VMAT2. VMAT1 is expressed exclusively in neuroendocrine, including chromaffin and enterochromaffin, cells. VMAT1 and VMAT2 are coexpressed in all chromaffin cells of the adrenal medulla. VMAT2 alone is expressed in histamine-storing enterochromaffin-like cells of the oxyntic mucosa of the stomach. The transport characteristics and pharmacology of each VMAT isoform have been directly compared after expression in digitonin-permeabilized fibroblastic (CV-1) cells, providing information about substrate feature recognition by each transporter and the role of vesicular monoamine storage in the mechanism of action of psychopharmacologic and neurotoxic agents in human. Serotonin has a similar affinity for both transporters. Catecholamines exhibit a 3-fold higher affinity, and histamine exhibits a 30-fold higher affinity, for VMAT2. Reserpine and ketanserin are slightly more potent inhibitors of VMAT2-mediated transport than of VMAT1-mediated transport, whereas tetrabenazine binds to and inhibits only VMAT2. N-methyl-4-phenylpyridinium, phenylethylamine, amphetamine, and methylenedioxymethamphetamine are all more potent inhibitors of VMAT2 than of VMAT1, whereas fenfluramine is a more potent inhibitor of VMAT1-mediated monamine transport than of VMAT2-mediated monoamine transport. The unique distributions of hVMAT1 and hVMAT2 provide new markers for multiple neuroendocrine lineages, and examination of their transport properties provides mechanistic insights into the pharmacology and physiology of amine storage in cardiovascular, endocrine, and central nervous system function.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Plasmodium falciparum requires glucose as its energy source to multiply within erythrocytes but is separated from plasma by multiple membrane systems. The mechanism of delivery of substrates such as glucose to intraerythrocytic parasites is unclear. We have developed a system for robust functional expression in Xenopus oocytes of the P. falciparum asexual stage hexose permease, PfHT1, and have analyzed substrate specificities of PfHT1. We show that PfHT1 (a high-affinity glucose transporter, Km ≈ 1.0 mM) also transports fructose (Km ≈ 11.5 mM). Fructose can replace glucose as an energy source for intraerythrocytic parasites. PfHT1 binds fructose in a furanose conformation and glucose in a pyranose form. Fructose transport by PfHT1 is ablated by mutation of a single glutamine residue, Q169, which is predicted to lie within helix 5 of the hexose permeation pathway. Glucose transport in the Q169N mutant is preserved. Comparison in oocytes of transport properties of PfHT1 and human facilitative glucose transporter (GLUT)1, an archetypal mammalian hexose transporter, combined with studies on cultured P. falciparum, has clarified hexose permeation pathways in infected erythrocytes. Glucose and fructose enter erythrocytes through separate permeation pathways. Our studies suggest that both substrates enter parasites via PfHT1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The large size of many novel therapeutics impairs their transport through the tumor extracellular matrix and thus limits their therapeutic effectiveness. We propose that extracellular matrix composition, structure, and distribution determine the transport properties in tumors. Furthermore, because the characteristics of the extracellular matrix largely depend on the tumor–host interactions, we postulate that diffusion of macromolecules will vary with tumor type as well as anatomical location. Diffusion coefficients of macromolecules and liposomes in tumors growing in cranial windows (CWs) and dorsal chambers (DCs) were measured by fluorescence recovery after photobleaching. For the same tumor types, diffusion of large molecules was significantly faster in CW than in DC tumors. The greater diffusional hindrance in DC tumors was correlated with higher levels of collagen type I and its organization into fibrils. For molecules with diameters comparable to the interfibrillar space the diffusion was 5- to 10-fold slower in DC than in CW tumors. The slower diffusion in DC tumors was associated with a higher density of host stromal cells that synthesize and organize collagen type I. Our results point to the necessity of developing site-specific drug carriers to improve the delivery of molecular medicine to solid tumors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A transference chamber was developed to measure the osmotic water permeability coefficient (Pos) in protoplasts 40 to 120 μm in diameter. The protoplast was held by a micropipette and submitted to a steep osmotic gradient created in the transference chamber. Pos was derived from the changes in protoplast dimensions, as measured using a light microscope. Permeabilities were in the range 1 to 1000 μm s−1 for the various types of protoplasts tested. The precision for Pos was ≤40%, and within this limit, no asymmetry in the water fluxes was observed. Measurements on protoplasts isolated from 2- to 5-d-old roots revealed a dramatic increase in Pos during root development. A shift in Pos from 10 to 500 μm s−1 occurred within less than 48 h. This phenomenon was found in maize (Zea mays), wheat (Triticum aestivum), and rape (Brassica napus) roots. These results show that early developmental processes modify water-transport properties of the plasma membrane, and that the transference chamber is adapted to the study of water-transport mechanisms in native membranes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recently individual two-headed kinesin molecules have been studied in in vitro motility assays revealing a number of their peculiar transport properties. In this paper we propose a simple and robust model for the kinesin stepping process with elastically coupled Brownian heads that show all of these properties. The analytic and numerical treatment of our model results in a very good fit to the experimental data and practically has no free parameters. Changing the values of the parameters in the restricted range allowed by the related experimental estimates has almost no effect on the shape of the curves and results mainly in a variation of the zero load velocity that can be directly fitted to the measured data. In addition, the model is consistent with the measured pathway of the kinesin ATPase.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mCAT-2 gene encodes a Na(+)-independent cationic amino acid (AA) transporter that is inducibly expressed in a tissue-specific manner in various physiological conditions. When mCAT-2 protein is expressed in Xenopus oocytes, the elicited AA transport properties are similar to the biochemically defined transport system y+. The mCAT-2 protein sequence is closely related to another cationic AA transporter (mCAT-1); these related proteins elicit virtually identical cationic AA transport in Xenopus oocytes. The two genes differ in their tissue expression and induction patterns. Here we report the presence of diverse 5' untranslated region (UTR) sequences in mCAT-2 transcripts. Sequence analysis of 22 independent mCAT-2 cDNA clones reveals that the cDNA sequences converge precisely 16 bp 5' of the initiator AUG codon. Moreover, analysis of genomic clones shows that the mCAT-2 gene 5'UTR exons are dispersed over 18 kb. Classical promoter and enhancer elements are present in appropriate positions 5' of the exons and their utilization results in regulated mCAT-2 mRNA accumulation in skeletal muscle and liver following partial hepatectomy. The isoform adjacent to the most distal promoter is found in all tissues and cell types previously shown to express mCAT-2, while the other 5' UTR isoforms are more tissue specific in their expression. Utilization of some or all of five putative promoters was documented in lymphoma cell clones, liver, and skeletal muscle. TATA-containing and (G+C)-rich TATA-less promoters appear to control mCAT-2 gene expression. The data indicate that the several distinct 5' mCAT-2 mRNA isoforms result from transcriptional initiation at distinct promoters and permit flexible transcriptional regulation of this cationic AA transporter gene.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fragments of small interlobular bile ducts averaging 20 microns in diameter can be isolated from rat liver. These isolated bile duct units form luminal spaces that are impermeant to dextran-40 and expand in size when cultured in 10 microM forskolin for 24-48 hr. Secretion is Cl- and HCO3- dependent and is stimulated by forskolin > dibutyryl cAMP > secretion but not by dideoxyforskolin, as assessed by video imaging techniques. Secretin stimulates Cl-/HCO3- exchange activity, and intraluminal pH increases after forskolin administration. These studies establish that small polarized physiologically intact interlobular bile ducts can be isolated from rat liver. These isolated bile duct units should be useful preparations for assessing the transport properties of small bile duct segments, which are the primary site of injury in cholestatic liver disorders, known as "vanishing bile duct syndromes."