3 resultados para Election of places

em National Center for Biotechnology Information - NCBI


Relevância:

40.00% 40.00%

Publicador:

Resumo:

For several decades, research into the mechanisms of genetic recombination proceeded without a complete understanding of its cellular function or its place in DNA metabolism. Many lines of research recently have coalesced to reveal a thorough integration of most aspects of DNA metabolism, including recombination. In bacteria, the primary function of homologous genetic recombination is the repair of stalled or collapsed replication forks. Recombinational DNA repair of replication forks is a surprisingly common process, even under normal growth conditions. The new results feature multiple pathways for repair and the involvement of many enzymatic systems. The long-recognized integration of replication and recombination in the DNA metabolism of bacteriophage T4 has moved into the spotlight with its clear mechanistic precedents. In eukaryotes, a similar integration of replication and recombination is seen in meiotic recombination as well as in the repair of replication forks and double-strand breaks generated by environmental abuse. Basic mechanisms for replication fork repair can now inform continued research into other aspects of recombination. This overview attempts to trace the history of the search for recombination function in bacteria and their bacteriophages, as well as some of the parallel paths taken in eukaryotic recombination research.