3 resultados para Education by the values
em National Center for Biotechnology Information - NCBI
Resumo:
A cell’s ability to effectively communicate with a neighboring cell is essential for tissue function and ultimately for the organism to which it belongs. One important mode of intercellular communication is the release of soluble cyto- and chemokines. Once secreted, these signaling molecules diffuse through the surrounding medium and eventually bind to neighboring cell’s receptors whereby the signal is received. This mode of communication is governed both by physicochemical transport processes and cellular secretion rates, which in turn are determined by genetic and biochemical processes. The characteristics of transport processes have been known for some time, and information on the genetic and biochemical determinants of cellular function is rapidly growing. Simultaneous quantitative analysis of the two is required to systematically evaluate the nature and limitations of intercellular signaling. The present study uses a solitary cell model to estimate effective communication distances over which a single cell can meaningfully propagate a soluble signal. The analysis reveals that: (i) this process is governed by a single, key, dimensionless group that is a ratio of biological parameters and physicochemical determinants; (ii) this ratio has a maximal value; (iii) for realistic values of the parameters contained in this dimensionless group, it is estimated that the domain that a single cell can effectively communicate in is ≈250 μm in size; and (iv) the communication within this domain takes place in 10–30 minutes. These results have fundamental implications for interpretation of organ physiology and for engineering tissue function ex vivo.
Resumo:
The SfiI endonuclease cleaves DNA at the sequence GGCCNNNN↓NGGCC, where N is any base and ↓ is the point of cleavage. Proteins that recognise discontinuous sequences in DNA can be affected by the unspecified sequence between the specified base pairs of the target site. To examine whether this applies to SfiI, a series of DNA duplexes were made with identical sequences apart from discrete variations in the 5 bp spacer. The rates at which SfiI cleaved each duplex were measured under steady-state conditions: the steady-state rates were determined by the DNA cleavage step in the reaction pathway. SfiI cleaved some of these substrates at faster rates than other substrates. For example, the change in spacer sequence from AACAA to AAACA caused a 70-fold increase in reaction rate. In general, the extrapolated values for kcat and Km were both higher on substrates with inflexible spacers than those with flexible structures. The dinucleotide at the site of cleavage was largely immaterial. SfiI activity is thus highly dependent on conformational variations in the spacer DNA.
Resumo:
Experiments using planktonic organisms revealed that the balance of radiant energy and available nutrients regulated herbivore growth rates through their effects on abundance and chemical composition of primary producers. Both algae and herbivores were energy limited at low light/nutrient ratios, but both were nutrient limited at high light/nutrient ratios. Herbivore growth increased with increasing light intensity at low values of the light/nutrient ratio due to increases in algal biomass, but growth decreased with increasing light at a high light/nutrient ratio due to decreases in algal quality. Herbivore production therefore was maximal at intermediate levels of the light/nutrient ratio. The results contribute to an understanding of mass transfer mechanisms in ecosystems and illustrate the importance of integration of energy-based and material-based currencies in ecology.