2 resultados para Ecological structure

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although salamanders are characteristic amphibians in Holarctic temperate habitats, in tropical regions they have diversified evolutionarily only in tropical America. An adaptive radiation centered in Middle America occurred late in the history of a single clade, the supergenus Bolitoglossa (Plethodontidae), and large numbers of species now occur in diverse habitats. Sublineages within this clade decrease in number from the northern to southern parts of Middle America, and in Costa Rica, there are but three. Despite this phylogenetic constraint, Costa Rica has many species; the number of salamander species on one local elevational transect in the Cordillera de Talamanca may be the largest for any such transect in the world. Extraordinary variation in sequences of the mitochondrial gene cytochrome b within a clade of the genus Bolitoglossa in Costa Rica reveals strong phylogeographic structure within a single species, Bolitoglossa pesrubra. Allozymic variation in 19 proteins reveals a pattern largely concordant with the mitochondrial DNA phylogeography. More species exist than are currently recognized. Diversification occurs in restricted geographic areas and involves sharp geographic and elevational differentiation and zonation. In their degree of genetic differentiation at a local scale, these species of the deep tropics exceed the known variation of extratropical salamanders, which also differ in being less restricted in elevational range. Salamanders display “tropicality” in that although speciose, they are usually local in distribution and rare. They display strong ecological and physiological differentiation that may contribute importantly to morphological divergence and species formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spatial structure of genetic variation within populations, an important interacting influence on evolutionary and ecological processes, can be analyzed in detail by using spatial autocorrelation statistics. This paper characterizes the statistical properties of spatial autocorrelation statistics in this context and develops estimators of gene dispersal based on data on standing patterns of genetic variation. Large numbers of Monte Carlo simulations and a wide variety of sampling strategies are utilized. The results show that spatial autocorrelation statistics are highly predictable and informative. Thus, strong hypothesis tests for neutral theory can be formulated. Most strikingly, robust estimators of gene dispersal can be obtained with practical sample sizes. Details about optimal sampling strategies are also described.