2 resultados para Earth-Moon system

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An old explanation of the moon illusion holds that various cues place the horizon moon at an effectively greater distance than the elevated moon. Although both moons have the same angular size, the horizon moon must be perceived as larger. More recent explanations hold that differences in accommodation or other factors cause the elevated moon to appear smaller. As a result of this illusory difference in size, the elevated moon appears to be more distant than the horizon moon. These two explanations, both based on the geometry of stereopsis, lead to two diametrically opposed hypotheses. That is, a depth interval at a long distance is associated with a smaller binocular disparity, whereas an equal depth interval at a smaller distance is associated with a larger disparity. We conducted experiments involving artificial moons and confirmed the hypothesis that the horizon moon is at a greater perceptual distance. Moreover, when a moon of constant angular size was moved closer it was also perceived as growing smaller, which is consistent with the older explanation. Although Emmert's law does not predict the size–distance relationship over long distances, we conclude that the horizon moon is perceived as larger because the perceptual system treats it as though it is much farther away. Finally, we observe that recent explanations substitute perceived size for angular size as a cue to distance. Thus, they imply that perceptions cause perceptions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the beginning the surface of the Earth was extremely hot, because the Earth as we know it is the product of a collision between two planets, a collision that also created the Moon. Most of the heat within the very young Earth was lost quickly to space while the surface was still quite hot. As it cooled, the Earth's surface passed monotonically through every temperature regime between silicate vapor to liquid water and perhaps even to ice, eventually reaching an equilibrium with sunlight. Inevitably the surface passed through a time when the temperature was around 100°C at which modern thermophile organisms live. How long this warm epoch lasted depends on how long a thick greenhouse atmosphere can be maintained by heat flow from the Earth's interior, either directly as a supplement to insolation, or indirectly through its influence on the nascent carbonate cycle. In both cases, the duration of the warm epoch would have been controlled by processes within the Earth's interior where buffering by surface conditions played little part. A potentially evolutionarily significant warm period of between 105 and 107 years seems likely, which nonetheless was brief compared to the vast expanse of geological time.