7 resultados para Early modern age

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two groups of humans are found in the Near East ≈100,000 years ago, the late archaic Neanderthals and the early modern Skhul/Qafzeh humans. Observations that Neanderthals were more heavily muscled, had stronger upper-limb bones, and possessed unusual shapes and orientations of some upper-limb joint complexes relative to the Skhul/Qafzeh hominids, have led some researchers to conclude that significant between-group upper-limb-related behavioral differences must have been present, despite the association of the two groups with similar Middle Paleolithic archeological complexes. A three-dimensional morphometric analysis of the hand remains of the Skhul/Qafzeh hominids, Neanderthals, early and late Upper Paleolithic humans, and Holocene humans supports the dichotomy. The Skhul/Qafzeh carpometacarpal remains do not have any unique morphologies relative to the other fossil samples remains examined. However, in the functionally significant metacarpal 1 and 3 bases they resemble Upper Paleolithic humans, not Neanderthals. Furthermore, the Skhul/Qafzeh sample differs significantly from the Neanderthals in many other aspects of hand functional anatomy. Given the correlations between changes in tool technologies and functional adaptations seen in the hands of Upper Paleolithic humans, it is concluded that the Skhul/Qafzeh hand remains were adapted to Upper Paleolithic-like manipulative repertoires. These results support the inference of significant behavioral differences between Neanderthals and the Skhul/Qafzeh hominids and indicate that a significant shift in human manipulative behaviors was associated with the earliest stages of the emergence of modern humans.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The emergence of modern humans in the Late Pleistocene, whatever its phylogenetic history, was characterized by a series of behaviorally important shifts reflected in aspects of human hard tissue biology and the archeological record. To elucidate these shifts further, diaphyseal cross-sectional morphology was analyzed by using cross-sectional areas and second moments of area of the mid-distal humerus and midshaft femur. The humeral diaphysis indicates a gradual reduction in habitual load levels from Eurasian late archaic, to Early Upper Paleolithic early modern, to Middle Upper Paleolithic early modern hominids, with the Levantine Middle Paleolithic early modern humans being a gracile anomalous outlier. The femoral diaphysis, once variation in ecogeographically patterned body proportions is taken into account, indicates no changes across the pre-30,000 years B.P. samples in habitual locomotor load levels, followed by a modest decrease through the Middle Upper Paleolithic.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

New accelerator mass spectrometry radiocarbon dates taken directly on human remains from the Late Pleistocene sites of Vindija and Velika Pećina in the Hrvatsko Zagorje of Croatia are presented. Hominid specimens from both sites have played critical roles in the development of current perspectives on modern human evolutionary emergence in Europe. Dates of ≈28 thousand years (ka) before the present (B.P.) and ≈29 ka B.P. for two specimens from Vindija G1 establish them as the most recent dated Neandertals in the Eurasian range of these archaic humans. The human frontal bone from Velika Pećina, generally considered one of the earliest representatives of modern humans in Europe, dated to ≈5 ka B.P., rendering it no longer pertinent to discussions of modern human origins. Apart from invalidating the only radiometrically based example of temporal overlap between late Neandertal and early modern human fossil remains from within any region of Europe, these dates raise the question of when early modern humans first dispersed into Europe and have implications for the nature and geographic patterning of biological and cultural interactions between these populations and the Neandertals.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Although the prevalence or even occurrence of insect herbivory during the Late Carboniferous (Pennsylvanian) has been questioned, we present the earliest-known ecologic evidence showing that by Late Pennsylvanian times (302 million years ago) a larva of the Holometabola was galling the internal tissue of Psaronius tree-fern fronds. Several diagnostic cellular and histological features of these petiole galls have been preserved in exquisite detail, including an excavated axial lumen filled with fecal pellets and comminuted frass, plant-produced response tissue surrounding the lumen, and specificity by the larval herbivore for a particular host species and tissue type. Whereas most suggestions over-whelmingly support the evolution of such intimate and reciprocal plant-insect interactions 175 million years later, we provide documentation that before the demise of Pennsylvanian age coal-swamp forests, a highly stereotyped life cycle was already established between an insect that was consuming internal plant tissue and a vascular plant host responding to that herbivory. This and related discoveries of insect herbivore consumption of Psaronius tissues indicate that modern-style herbivores were established in Late Pennsylvanian coal-swamp forests.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

beta-Amyloid deposition and neurofibrillary tangle formation are two histopathological features of Alzheimer disease. We have previously reported that beta-amyloid immunoreactive deposits form in the brains of transgenic mice programmed for neuronal expression of the 751-amino acid isoform of human beta-amyloid precursor protein (beta-APP751) and now describe that these animals also display Alz50 intraneuronal immunoreactivity similar to that seen in early Alzheimer disease. This suggests that abnormal beta-APP expression and/or beta-amyloid deposition promotes pathogenic alterations in tau protein. The frequency of both beta-amyloid deposition and Alz50-positive neurons was twice as prevalent in brains from old (22 months) as compared to young (2-3 months) beta-APP751 transgenic mice. This increase in histopathology with age in beta-APP751 transgenic mice parallels the time-dependent progression seen in the human disease.