27 resultados para Early Phase

em National Center for Biotechnology Information - NCBI


Relevância:

70.00% 70.00%

Publicador:

Resumo:

To identify cellular functions involved in the early phase of the retroviral life cycle, somatic cell mutants were isolated after selection for resistance to infection. Rat2 fibroblasts were treated with chemical mutagens, and individual virus-resistant clones were recovered after selection for resistance to infection. Two clones were characterized in detail. Both mutant lines were resistant to infection by both ecotropic and amphotropic murine viruses, as well as by human immunodeficiency virus type 1 pseudotypes. One clone showed a strong block to reverse transcription of the retroviral RNA, including formation of the earliest DNA products. The second clone showed normal levels of viral DNA synthesis but did not allow formation of the circular DNAs normally found in the nucleus. Cell fractionation showed that the viral preintegration complex was present in a form that could not be extracted under conditions that readily extracted the complex from wild-type cells. The results suggest that the DNA was trapped in a nonproductive state and excluded from the nucleus of the infected cell. The properties of these two mutant lines suggest that host gene products play important roles both before and after reverse transcription.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have used a transgene mutation approach to study how expression domains of Hoxc8 are established during mouse embryogenesis. A cis-regulatory region located 3 kb upstream from the Hoxc8 translational start site directs the early phase of expression. Four elements, termed A, B, C, and D, were previously shown to direct expression to the neural tube. Here we report that a fifth element, E, located immediately downstream of D directs expression to mesoderm in combination with the other four elements. These elements are interdependent and partially redundant. Different combinations of elements determine expression in different posterior regions of the embryo. Neural tube expression is determined minimally by ABC, ABD, or ACD; somite expression by ACDE; and lateral plate mesoderm expression by DE. Neural tube and lateral plate mesoderm enhancers can be separated, but independent somite expression has not been achieved. Furthermore, mutations within these elements result in posteriorization of the reporter gene expression. Thus, the anterior extent of expression is determined by the combined action of these elements. We propose that the early phase of Hoxc8 expression is directed by two separate mechanisms: one that determines tissue specificity and another that determines anterior extent of expression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An adenovirus type 5 mutant deleted for the preterminal protein (pTP) gene was constructed using cell lines that express pTP. The pTP deletion mutant virus is incapable of replicating in the absence of complementation and does not express detectable levels of viral mRNAs that are expressed only after the onset of replication. Accumulation of early-region mRNAs, including that for E1A, exhibits a lag relative to that observed from the wild-type virus. However, E1A mRNA accumulation attains a steady-state level similar to the level of expression during the early phase of infection with the wild-type virus. In 293-pTP cells (human embryonic kidney cells that express pTP in addition to high levels of adenovirus E1A and E1B proteins), the pTP deletion mutant virus replicates efficiently and yields infectious titers within 5-fold of that of the wild-type virus. The deletion of 1.2 kb of pTP-encoding sequence increases the size of foreign DNA that can be introduced into the virus and, with an absolute block to replication, makes this virus an important tool for gene therapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Protracted administration of diazepam elicits tolerance, whereas discontinuation of treatment results in signs of dependence. Tolerance to the anticonvulsant action of diazepam is present in an early phase (6, 24, and 36 h) but disappears in a late phase (72–96 h) of withdrawal. In contrast, signs of dependence such as decrease in open-arm entries on an elevated plus-maze and increased susceptibility to pentylenetetrazol-induced seizures were apparent 96 h (but not 12, 24, or 48 h) after diazepam withdrawal. During the first 72 h of withdrawal, tolerance is associated with changes in the expression of GABAA (γ-aminobutyric acid type A) receptor subunits (decrease in γ2 and α1; increase in α5) and with an increase of mRNA expression of the most abundant form of glutamic acid decarboxylase (GAD), GAD67. In contrast, dl-α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor GluR1 subunit mRNA and cognate protein, which are normal during the early phase of diazepam withdrawal, increase by approximately 30% in cortex and hippocampus in association with the appearance of signs of dependence 96 h after diazepam withdrawal. Immunohistochemical studies of GluR1 subunit expression with gold-immunolabeling technique reveal that the increase of GluR1 subunit protein is localized to layer V pyramidal neurons and their apical dendrites in the cortex, and to pyramidal neurons and in their dendritic fields in hippocampus. The results suggest an involvement of GABA-mediated processes in the development and maintenance of tolerance to diazepam, whereas excitatory amino acid-related processes (presumably via AMPA receptors) may be involved in the expression of signs of dependence after withdrawal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

cAMP induces a protein-synthesis-dependent late phase of long-term potentiation (LTP) at CA3–CA1 synapses in acute hippocampal slices. Herein we report cAMP-mediated LTP and long-term depression (LTD) at monosynaptic CA3–CA1 cell pairs in organotypic hippocampal slice cultures. After bath application of the membrane-permeable cAMP analog adenosine 3′,5′-cyclic monophosphorothioate, Sp isomer (Sp-cAMPS), synaptic transmission was enhanced for at least 2 h. Consistent with previous findings, the late phase of LTP requires activation of cAMP-dependent protein kinase A and protein synthesis. There is also an early phase of LTP induced by cAMP; the early phase depends on protein kinase A but, in contrast to the later phase, does not require protein synthesis. In addition, the cAMP-induced LTP is associated with a reduction of paired-pulse facilitation, suggesting that presynaptic modification may be involved. Furthermore, we found that Sp-cAMPS induced LTD in slices pretreated with picrotoxin, a γ-aminobutyric acid type A (GABAA) receptor antagonist. This form of LTD depends on protein synthesis and protein phosphatase(s) and is accompanied by an increased ratio of failed synaptic transmission. These results suggest that GABAA receptors can modulate the effect of cAMP on synaptic transmission and thus determine the direction of synaptic plasticity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Normal epithelial cells undergo apoptosis when they are denied contact with the extracellular matrix, in a process termed “anoikis.” Conversely, malignant epithelial cells typically acquire anchorage independence, i.e., the capacity to survive and grow in the absence of matrix interaction. Here we asked the question whether anoikis is affected by signaling through the EGF receptor (EGFR). We focused on the EGFR because EGFR signaling is frequently deregulated in malignant epithelial cells. We demonstrate that EGFR activation markedly alleviated the requirement of matrix engagement for survival of primary and immortalized human keratinocytes in suspension culture. Protection of epithelial cells through EGFR activation against anoikis was associated with and required sustained MAPK phosphorylation during the early phase of suspension culture. Interestingly, high levels of MAPK phosphorylation were not only required for EGFR-mediated protection against anoikis but also occurred as a consequence of caspase activation at later stages of suspension culture. These results demonstrate that EGFR activation contributes to anchorage-independent epithelial cell survival and identify MAPK activation as an important mechanism in this process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the formation of connections during the development of the nervous system, it is generally accepted that there is an early phase not requiring neural activity and a later activity-dependent phase. The initial processes of axonal pathfinding and target selection are not thought to require neural activity, whereas the later fine-tuning of connections into their final adult patterns does. We report an apparent exception to this rule in which action potential activity seems to be required very early in development for thalamic axons to form appropriate patterns of terminal arborizations with their ultimate target neurons in layer 4 of the cerebral cortex. Blockade of sodium action potentials during the 2-week fetal period when visual thalamic axons initially grow into the primary visual cortex in cats prevents the normally occurring branching of lateral geniculate nucleus axons within layer 4. This observation implies a role for action-potential activity in cerebral cortical development far earlier than previously suspected, weeks before eye-opening and the onset of the well-known process of activity-dependent reorganization of axonal terminal arbors that leads to the formation of ocular dominance columns.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transcription of the late genes of simian virus 40 (SV40) is repressed during the early phase of the lytic cycle of infection of binding of cellular factors, called IBP-s, to the SV40 late promoter; repression is relieved after the onset of viral DNA replication by titration of these repressors. Preliminary data indicated that one of the major components of IBP-s was human estrogen-related receptor 1 (hERR1). We show here that several members of the steroid/thyroid hormone receptor superfamily, including testis receptor 2, thyroid receptor alpha 1 in combination with retinoid X receptor alpha, chicken ovalbumin upstream promoter transcription factors 1 and 2 (COUP-TF1 and COUP-TF2), as well as hERR1, possess the properties of IBP-s. These receptors bind specifically to hormone receptor binding sites present in the SV40 major late promoter. Recombinant COUP-TF1 specifically represses transcription from the SV40 major late promoter in a cell-free transcription system. Expression of COUP-TF1, COUP-TF2, or hERR1 in monkey cells results in repression of the SV40 late promoter, but not the early promoter, in the absence of the virally encoded large tumor antigen. Overexpression of COUP-TF1 leads to a delay in the early-to-late switch in SV40 gene expression during the lytic cycle of infection. Thus, members of this superfamily can play major direct roles in regulating expression of SV40. Possibly, natural or synthetic ligands to these receptors can serve as antiviral drugs. Our findings also provide the basis for the development of assays to screen for the ligands to testis receptor 2 and hERR1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated the effect of cell shrinkage on whole-cell currents of M-1 mouse cortical collecting duct cells. Addition of 100 mM sucrose to an isotonic NaCl bath solution induced cell shrinkage and increased whole-cell currents within 5-10 min by approximately 12-fold. The effect was reversible upon return to isotonic solution and could also be elicited by adding 100 mM urea or 50 mM NaCl. Replacement of bath Na+ by K+, Cs+, Li+, or Rb+ did not significantly affect the stimulated inward current, but replacement by N-methyl-D-glucamine reduced it by 88.1 +/- 1.3% (n = 34); this demonstrates that hypertonicity activates a nonselective alkali cation conductance. The activation was independent of extra- and intracellular Ca2+, but 1 or 10 mM ATP in the pipette suppressed it in a concentration-dependent manner, indicating that intracellular ATP levels may modulate the degree of channel activation. Flufenamic acid (0.1 mM) and gadolinium (0.1 mM) inhibited the stimulated current by 68.7 +/- 5.9% (n = 9) and 32.4 +/- 11.7% (n = 6), respectively, whereas 0.1 mM amiloride had no significant effect. During the early phase of hypertonic stimulation single-channel transitions could be detected in whole-cell current recordings, and a gradual activation of 30 and more individual channels with a single-channel conductance of 26.7 +/- 0.4 pS (n = 29) could be resolved. Thus, we identified the nonselective cation channel underlying the shrinkage-induced whole-cell conductance that may play a role in volume regulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrogen–deuterium exchange experiments have been used previously to investigate the structures of well defined states of a given protein. These include the native state, the unfolded state, and any intermediates that can be stably populated at equilibrium. More recently, the hydrogen–deuterium exchange technique has been applied in kinetic labeling experiments to probe the structures of transiently formed intermediates on the kinetic folding pathway of a given protein. From these equilibrium and nonequilibrium studies, protection factors are usually obtained. These protection factors are defined as the ratio of the rate of exchange of a given backbone amide when it is in a fully solvent-exposed state (usually obtained from model peptides) to the rate of exchange of that amide in some state of the protein or in some intermediate on the folding pathway of the protein. This definition is straightforward for the case of equilibrium studies; however, it is less clear-cut for the case of transient kinetic intermediates. To clarify the concept for the case of burst-phase intermediates, we have introduced and mathematically defined two different types of protection factors: one is Pstruc, which is more related to the structure of the intermediate, and the other is Papp, which is more related to the stability of the intermediate. Kinetic hydrogen–deuterium exchange data from disulfide-intact ribonuclease A and from cytochrome c are discussed to explain the use and implications of these two definitions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In fission yeast both DNA polymerase alpha (pol α) and delta (pol δ) are required for DNA chromosomal replication. Here we demonstrate that Schizosaccharomyces pombe cdc20+ encodes the catalytic subunit of DNA polymerase epsilon (pol ɛ) and that this enzyme is also required for DNA replication. Following a shift to the restrictive temperature, cdc20 temperature-sensitive mutant cells block at the onset of DNA replication, suggesting that cdc20+ is required early in S phase very near to the initiation step. In the budding yeast Saccharomyces cerevisiae, it has been reported that in addition to its proposed role in chromosomal replication, DNA pol ɛ (encoded by POL2) also functions directly as an S phase checkpoint sensor [Navas, T. A., Zhou, Z. & Elledge, S. J. (1995) Cell 80, 29–39]. We have investigated whether cdc20+ is required for the checkpoint control operating in fission yeast, and our data indicate that pol ɛ does not have a role as a checkpoint sensor coordinating S phase with mitosis. In contrast, germinating spores disrupted for the gene encoding pol α rapidly enter mitosis in the absence of DNA synthesis, suggesting that in the absence of pol α, normal coordination between S phase and mitosis is lost. We propose that the checkpoint signal operating in S phase depends on assembly of the replication initiation complex, and that this signal is generated prior to the elongation stage of DNA synthesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have previously developed a novel technique for isolation of cDNAs encoding M phase phosphoproteins (MPPs). In the work described herein, we further characterize MPP10, one of 10 novel proteins that we identified, with regard to its potential nucleolar function. We show that by cell fractionation, almost all MPP10 was found in isolated nucleoli. By immunofluorescence, MPP10 colocalized with nucleolar fibrillarin and other known nucleolar proteins in interphase cells but was not detected in the coiled bodies stained for either fibrillarin or p80 coilin, a protein found only in the coiled body. When nucleoli were separated into fibrillar and granular domains by treatment with actinomycin D, almost all the MPP10 was found in the fibrillar caps, which contain proteins involved in rRNA processing. In early to middle M phase of the cell cycle, MPP10 colocalized with fibrillarin to chromosome surfaces. At telophase, MPP10 was found in cellular structures that resembled nucleolus-derived bodies and prenucleolar bodies. Some of these bodies lacked fibrillarin, a previously described component of nucleolus-derived bodies and prenucleolar bodies, however, and the bulk of MPP10 arrived at the nucleolus later than fibrillarin. To further examine the properties of MPP10, we immunoprecipitated it from cell sonicates. The resulting precipitates contained U3 small nucleolar RNA (snoRNA) but no significant amounts of other box C/D snoRNAs. This association of MPP10 with U3 snoRNA was stable to 400 mM salt and suggested that MPP10 is a component of the human U3 small nucleolar ribonucleoprotein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To investigate the role of filamentous actin in the endocytic pathway, we used the cell-permeant drug Jasplakinolide (JAS) to polymerize actin in intact polarized Madin–Darby canine kidney (MDCK) cells. The uptake and accumulation of the fluid-phase markers fluorescein isothiocyanate (FITC)-dextran and horseradish peroxidase (HRP) were followed in JAS-treated or untreated cells with confocal fluorescence microscopy, biochemical assays, and electron microscopy. Pretreatment with JAS increased the uptake and accumulation of fluid-phase markers in MDCK cells. JAS increased endocytosis in a polarized manner, with a marked effect on fluid-phase uptake from the basolateral surface but not from the apical surface of polarized MDCK cells. The early uptake of FITC-dextran and HRP was increased more than twofold in JAS-treated cells. At later times, FITC-dextran and HRP accumulated in clustered endosomes in the basal and middle regions of JAS-treated cells. The large accumulated endosomes were similar to late endosomes but they were not colabeled for other late endosome markers, such as rab7 or mannose-6-phosphate receptor. JAS altered transport in the endocytic pathway at a later stage than the microtubule-dependent step affected by nocodazole. JAS also had a notable effect on cell morphology, inducing membrane bunching at the apical pole of MDCK cells. Although other studies have implicated actin in endocytosis at the apical cell surface, our results provide novel evidence that filamentous actin is also involved in the endocytosis of fluid-phase markers from the basolateral membrane of polarized cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous work has established that activation of Mos, Mek, and p42 mitogen-activated protein (MAP) kinase can trigger release from G2-phase arrest in Xenopus oocytes and oocyte extracts and can cause Xenopus embryos and extracts to arrest in mitosis. Herein we have found that activation of the MAP kinase cascade can also bring about an interphase arrest in cycling extracts. Activation of the cascade early in the cycle was found to bring about the interphase arrest, which was characterized by an intact nuclear envelope, partially condensed chromatin, and interphase levels of H1 kinase activity, whereas activation of the cascade just before mitosis brought about the mitotic arrest, with a dissolved nuclear envelope, condensed chromatin, and high levels of H1 kinase activity. Early MAP kinase activation did not interfere significantly with DNA replication, cyclin synthesis, or association of cyclins with Cdc2, but it did prevent hyperphosphorylation of Cdc25 and Wee1 and activation of Cdc2/cyclin complexes. Thus, the extracts were arrested in a G2-like state, unable to activate Cdc2/cyclin complexes. The MAP kinase-induced G2 arrest appeared not to be related to the DNA replication checkpoint and not to be mediated through inhibition of Cdk2/cyclin E; evidently a novel mechanism underlies this arrest. Finally, we found that by delaying the inactivation of MAP kinase during release of a cytostatic factor-arrested extract from its arrest state, we could delay the subsequent entry into mitosis. This finding suggests that it is the persistence of activated MAP kinase after fertilization that allows the occurrence of a G2-phase during the first mitotic cell cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The TOR proteins, originally identified as targets of the immunosuppressant rapamycin, contain an ATM-like “lipid kinase” domain and are required for early G1 progression in eukaryotes. Using a screen to identify Saccharomyces cerevisiae mutants requiring overexpression of Tor1p for viability, we have isolated mutations in a gene we call ROT1 (requires overexpression of Tor1p). This gene is identical to DNA2, encoding a helicase required for DNA replication. As with its role in cell cycle progression, both the N-terminal and C-terminal regions, as well as the kinase domain of Tor1p, are required for rescue of dna2 mutants. Dna2 mutants are also rescued by Tor2p and show synthetic lethality with tor1 deletion mutants under specific conditions. Temperature-sensitive (Ts) dna2 mutants arrest irreversibly at G2/M in a RAD9- and MEC1-dependent manner, suggesting that Dna2p has a role in S phase. Frequencies of mitotic recombination and chromosome loss are elevated in dna2 mutants, also supporting a role for the protein in DNA synthesis. Temperature-shift experiments indicate that Dna2p functions during late S phase, although dna2 mutants are not deficient in bulk DNA synthesis. These data suggest that Dna2p is not required for replication fork progression but may be needed for a later event such as Okazaki fragment maturation.