5 resultados para Early Modern Ages

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two groups of humans are found in the Near East ≈100,000 years ago, the late archaic Neanderthals and the early modern Skhul/Qafzeh humans. Observations that Neanderthals were more heavily muscled, had stronger upper-limb bones, and possessed unusual shapes and orientations of some upper-limb joint complexes relative to the Skhul/Qafzeh hominids, have led some researchers to conclude that significant between-group upper-limb-related behavioral differences must have been present, despite the association of the two groups with similar Middle Paleolithic archeological complexes. A three-dimensional morphometric analysis of the hand remains of the Skhul/Qafzeh hominids, Neanderthals, early and late Upper Paleolithic humans, and Holocene humans supports the dichotomy. The Skhul/Qafzeh carpometacarpal remains do not have any unique morphologies relative to the other fossil samples remains examined. However, in the functionally significant metacarpal 1 and 3 bases they resemble Upper Paleolithic humans, not Neanderthals. Furthermore, the Skhul/Qafzeh sample differs significantly from the Neanderthals in many other aspects of hand functional anatomy. Given the correlations between changes in tool technologies and functional adaptations seen in the hands of Upper Paleolithic humans, it is concluded that the Skhul/Qafzeh hand remains were adapted to Upper Paleolithic-like manipulative repertoires. These results support the inference of significant behavioral differences between Neanderthals and the Skhul/Qafzeh hominids and indicate that a significant shift in human manipulative behaviors was associated with the earliest stages of the emergence of modern humans.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The emergence of modern humans in the Late Pleistocene, whatever its phylogenetic history, was characterized by a series of behaviorally important shifts reflected in aspects of human hard tissue biology and the archeological record. To elucidate these shifts further, diaphyseal cross-sectional morphology was analyzed by using cross-sectional areas and second moments of area of the mid-distal humerus and midshaft femur. The humeral diaphysis indicates a gradual reduction in habitual load levels from Eurasian late archaic, to Early Upper Paleolithic early modern, to Middle Upper Paleolithic early modern hominids, with the Levantine Middle Paleolithic early modern humans being a gracile anomalous outlier. The femoral diaphysis, once variation in ecogeographically patterned body proportions is taken into account, indicates no changes across the pre-30,000 years B.P. samples in habitual locomotor load levels, followed by a modest decrease through the Middle Upper Paleolithic.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

New accelerator mass spectrometry radiocarbon dates taken directly on human remains from the Late Pleistocene sites of Vindija and Velika Pećina in the Hrvatsko Zagorje of Croatia are presented. Hominid specimens from both sites have played critical roles in the development of current perspectives on modern human evolutionary emergence in Europe. Dates of ≈28 thousand years (ka) before the present (B.P.) and ≈29 ka B.P. for two specimens from Vindija G1 establish them as the most recent dated Neandertals in the Eurasian range of these archaic humans. The human frontal bone from Velika Pećina, generally considered one of the earliest representatives of modern humans in Europe, dated to ≈5 ka B.P., rendering it no longer pertinent to discussions of modern human origins. Apart from invalidating the only radiometrically based example of temporal overlap between late Neandertal and early modern human fossil remains from within any region of Europe, these dates raise the question of when early modern humans first dispersed into Europe and have implications for the nature and geographic patterning of biological and cultural interactions between these populations and the Neandertals.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Sangiran dome is the primary stratigraphic window for the Plio-Pleistocene deposits of the Solo basin of Central Jawa. The dome has yielded nearly 80 Homo erectus fossils, around 50 of which have known findspots. With a hornblende 40Ar/39Ar plateau age of 1.66 ± 0.04 mega-annum (Ma) reportedly associated with two fossils [Swisher, C.C., III, Curtis, G. H., Jacob, T., Getty, A. G., Suprijo, A. & Widiasmoro (1994) Science 263, 1118–1121), the dome offers evidence that early Homo dispersed to East Asia during the earliest Pleistocene. Unfortunately, the hornblende pumice was sampled at Jokotingkir Hill, a central locality with complex lithostratigraphic deformation and dubious specimen provenance. To address the antiquity of Sangiran H. erectus more systematically, we investigate the sedimentary framework and hornblende 40Ar/39Ar age for volcanic deposits in the southeast quadrant of the dome. In this sector, Bapang (Kabuh) sediments have their largest exposure, least deformation, and most complete tephrostratigraphy. At five locations, we identify a sequence of sedimentary cycles in which H. erectus fossils are associated with epiclastic pumice. From sampled pumice, eight hornblende separates produced 40Ar/39Ar plateau ages ranging from 1.51 ± 0.08 Ma at the Bapang/Sangiran Formation contact, to 1.02 ± 0.06 Ma, at a point above the hominin-bearing sequence. The chronological sequence of 40Ar/39Ar ages follows stratigraphic order across the southeast quadrant. An intermediate level yielding four nearly complete crania has an age of about 1.25 Ma.