130 resultados para EXTRACELLULAR BIOSYNTHESIS

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability of Nicotiana tabacum cell cultures to utilize farnesol (F-OH) for sterol and sesquiterpene biosynthesis was investigated. [3H]F-OH was readily incorporated into sterols by rapidly growing cell cultures. However, the incorporation rate into sterols was reduced by greater than 70% in elicitor-treated cell cultures whereas a substantial proportion of the radioactivity was redirected into capsidiol, an extracellular sesquiterpene phytoalexin. The incorporation of [3H]F-OH into sterols was inhibited by squalestatin 1, suggesting that [3H]F-OH was incorporated via farnesyl pyrophosphate (F-P-P). Consistent with this possibility, N. tabacum proteins were metabolically labeled with [3H]F-OH or [3H]geranylgeraniol ([3H]GG-OH). Kinase activities converting F-OH to farnesyl monophosphate (F-P) and, subsequently, F-P-P were demonstrated directly by in vitro enzymatic studies. [3H]F-P and [3H]F-P-P were synthesized when exogenous [3H]F-OH was incubated with microsomal fractions and CTP. The kinetics of formation suggested a precursor–product relationship between [3H]F-P and [3H]F-P-P. In agreement with this kinetic pattern of labeling, [32P]F-P and [32P]F-P-P were synthesized when microsomal fractions were incubated with F-OH and F-P, respectively, with [γ-32P]CTP serving as the phosphoryl donor. Under similar conditions, the microsomal fractions catalyzed the enzymatic conversion of [3H]GG-OH to [3H]geranylgeranyl monophosphate and [3H]geranylgeranyl pyrophosphate ([3H]GG-P-P) in CTP-dependent reactions. A novel biosynthetic mechanism involving two successive monophosphorylation reactions was supported by the observation that [3H]CTP was formed when microsomes were incubated with [3H]CDP and either F-P-P or GG-P-P, but not F-P. These results document the presence of at least two CTP-mediated kinases that provide a mechanism for the utilization of F-OH and GG-OH for the biosynthesis of isoprenoid lipids and protein isoprenylation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycolic acids are a major constituent of the mycobacterial cell wall, and they form an effective permeability barrier to protect mycobacteria from antimicrobial agents. Although the chemical structures of mycolic acids are well established, little is known on their biosynthesis. We have isolated a mycolate-deficient mutant strain of Mycobacterium smegmatis mc2-155 by chemical mutagenesis followed by screening for increased sensitivity to novobiocin. This mutant also was hypersensitive to other hydrophobic compounds such as crystal violet, rifampicin, and erythromycin. Entry of hydrophobic probes into mutant cells occurred much more rapidly than that into the wild-type cells. HPLC and TLC analysis of fatty acid composition after saponification showed that the mutant failed to synthesize full-length mycolic acids. Instead, it accumulated a series of long-chain fatty acids, which were not detected in the wild-type strain. Analysis by 1H NMR, electrospray and electron impact mass spectroscopy, and permanganate cleavage of double bonds showed that these compounds corresponded to the incomplete meromycolate chain of mycolic acids, except for the presence of a β-hydroxyl group. This direct identification of meromycolates as precursors of mycolic acids provides a strong support for the previously proposed pathway for mycolic acid biosynthesis involving the separate synthesis of meromycolate chain and the α-branch of mycolic acids, followed by the joining of these two branches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vitamin C (l-ascorbic acid; AsA) acts as a potent antioxidant and cellular reductant in plants and animals. AsA has long been known to have many critical physiological roles in plants, yet its biosynthesis is only currently being defined. A pathway for AsA biosynthesis that features GDP-mannose and l-galactose has recently been proposed for plants. We have isolated a collection of AsA-deficient mutants of Arabidopsis thaliana that are valuable tools for testing of an AsA biosynthetic pathway. The best-characterized of these mutants (vtc1) contains ≈25% of wild-type AsA and is defective in AsA biosynthesis. By using a combination of biochemical, molecular, and genetic techniques, we have demonstrated that the VTC1 locus encodes a GDP-mannose pyrophosphorylase (mannose-1-P guanyltransferase). This enzyme provides GDP-mannose, which is used for cell wall carbohydrate biosynthesis and protein glycosylation as well as for AsA biosynthesis. In addition to genetically defining the first locus involved in AsA biosynthesis, this work highlights the power of using traditional mutagenesis techniques coupled with the Arabidopsis Genome Initiative to rapidly clone physiologically important genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphatidylserine (PtdSer) synthesis in Chinese hamster ovary (CHO) cells occurs through the exchange of l-serine with the base moiety of phosphatidylcholine or phosphatidylethanolamine. The synthesis is depressed on the addition of PtdSer to the culture medium. A CHO cell mutant named mutant 29, whose PtdSer biosynthesis is highly resistant to this depression by exogenous PtdSer, has been isolated from CHO-K1 cells. In the present study, the PtdSer-resistant PtdSer biosynthesis in the mutant was traced to a point mutation in the PtdSer synthase I gene, pssA, resulting in the replacement of Arg-95 of the synthase by lysine. Introduction of the mutant pssA cDNA, but not the wild-type pssA cDNA, into CHO-K1 cells induced the PtdSer-resistant PtdSer biosynthesis. In a cell-free system, the serine base-exchange activity of the wild-type pssA-transfected cells was inhibited by PtdSer, but that of the mutant pssA-transfected cells was resistant to the inhibition. Like the mutant 29 cells, the mutant pssA-transfected cells grown without exogenous PtdSer exhibited an ≈2-fold increase in the cellular PtdSer level compared with that in CHO-K1 cells, although the wild-type pssA-transfected cells did not exhibit such a significant increase. These results indicated that the inhibition of PtdSer synthase I by PtdSer is essential for the maintenance of a normal PtdSer level in CHO-K1 cells and that Arg-95 of the synthase is a crucial residue for the inhibition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiple human skeletal and craniosynostosis disorders, including Crouzon, Pfeiffer, Jackson–Weiss, and Apert syndromes, result from numerous point mutations in the extracellular region of fibroblast growth factor receptor 2 (FGFR2). Many of these mutations create a free cysteine residue that potentially leads to abnormal disulfide bond formation and receptor activation; however, for noncysteine mutations, the mechanism of receptor activation remains unclear. We examined the effect of two of these mutations, W290G and T341P, on receptor dimerization and activation. These mutations resulted in cellular transformation when expressed as FGFR2/Neu chimeric receptors. Additionally, in full-length FGFR2, the mutations induced receptor dimerization and elevated levels of tyrosine kinase activity. Interestingly, transformation by the chimeric receptors, dimerization, and enhanced kinase activity were all abolished if either the W290G or the T341P mutation was expressed in conjunction with mutations that eliminate the disulfide bond in the third immunoglobulin-like domain (Ig-3). These results demonstrate a requirement for the Ig-3 cysteine residues in the activation of FGFR2 by noncysteine mutations. Molecular modeling also reveals that noncysteine mutations may activate FGFR2 by altering the conformation of the Ig-3 domain near the disulfide bond, preventing the formation of an intramolecular bond. This allows the unbonded cysteine residues to participate in intermolecular disulfide bonding, resulting in constitutive activation of the receptor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The small HIV-1 accessory protein Vpr (virus protein R) is a multifunctional protein that is present in the serum and cerebrospinal fluid of AIDS patients. We previously showed that Vpr can form cation-selective ion channels across planar lipid bilayers, introducing the possibility that, if incorporated into the membranes of living cells, Vpr might form ion channels and consequently perturb the maintained ionic gradient. In this study, we demonstrate, by a variety of approaches, that Vpr added extracellularly to intact cells does indeed form ion channels. We use confocal laser scanning microscopy to examine the subcellular localization of fluorescently labeled Vpr. Plasmalemma depolarization and damage are examined using the anionic potential-sensitive dye bis(1,3-dibutylbarbituric acid) trimethine oxonol and propidium iodide (PI), respectively, and the effect of Vpr on whole-cell current is demonstrated directly by using the patch-clamp technique. We show that recombinant purified extracellular Vpr associates with the plasmalemma of hippocampal neurons to cause a large inward cation current and depolarization of the plasmalemma, eventually resulting in cell death. Thus, we demonstrate a physiological action of extracellular Vpr and present its mechanistic basis. These findings may have important implications for neuropathologies in AIDS patients who possess significant amounts of Vpr in the cerebrospinal fluid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The G protein-coupled m1 and m3 muscarinic acetylcholine receptors increase tyrosine phosphorylation of several proteins, including the focal adhesion-associated proteins paxillin and focal adhesion kinase (FAK), but the mechanism is not understood. Activation of integrins during adhesion of cells to extracellular matrix, or stimulation of quiescent cell monolayers with G protein-coupled receptor ligands including bradykinin, bombesin, endothelin, vasopressin, and lysophosphatidic acid, also induces tyrosine phosphorylation of paxillin and FAK and formation of focal adhesions. These effects are generally independent of protein kinase C but are inhibited by agents that prevent cytoskeletal assembly or block activation of the small molecular weight G protein Rho. This report demonstrates that tyrosine phosphorylation of paxillin and FAK elicited by stimulation of muscarinic m3 receptors with the acetylcholine analog carbachol is inhibited by soluble peptides containing the arginine–glycine–aspartate motif (the recognition site for integrins found in adhesion proteins such as fibronectin) but is unaffected by peptides containing the inactive sequence arginine–glycine–glutamate. Tyrosine phosphorylation elicited by carbachol, but not by cell adhesion to fibronectin, is reduced by the protein kinase C inhibitor GF 109203X. The response to carbachol is dependent on the presence of fibronectin. Moreover, immunofluorescence studies show that carbachol treatment induces formation of stress fibers and focal adhesions. These results suggest that muscarinic receptor stimulation activates integrins via a protein kinase C-dependent mechanism. The activated integrins transmit a signal into the cell’s interior leading to tyrosine phosphorylation of paxillin and FAK. This represents a novel mechanism for regulation of tyrosine phosphorylation by muscarinic receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vaccinia virus (VV) produces two antigenically and structurally distinct infectious virions, intracellular mature virus (IMV) and extracellular enveloped virus (EEV). Here we have investigated the resistance of EEV and IMV to neutralization by complement in the absence of immune antibodies. When EEV is challenged with complement from the same species as the cells used to grow the virus, EEV is resistant to neutralization by complement, whereas IMV is not. EEV resistance was not a result of EEV protein B5R, despite its similarity to proteins of the regulators of complement activation (RCA) family, or to any of the other EEV proteins tested (A34R, A36R, and A56R gene products). EEV was sensitive to complement when the virus was grown in one species and challenged with complement from a different species, suggesting that complement resistance might be mediated by host RCA incorporated into the EEV outer envelope. This hypothesis was confirmed by several observations: (i) immunoblot analysis revealed that cellular membrane proteins CD46, CD55, CD59, CD71, CD81, and major histocompatibility complex class I antigen were detected in purified EEV but not IMV; (ii) immunoelectron microscopy revealed cellular RCA on the surface of EEV retained on the cell surface; and (iii) EEV derived from rat cells expressing the human RCA CD55 or CD55 and CD59 were more resistant to human complement than EEV derived from control rat cells that expressed neither CD55 nor CD59. These data justify further analysis of the roles of these (and possible other) cellular proteins in EEV biology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants, unlike other higher eukaryotes, possess all the necessary enzymatic equipment for de novo synthesis of methionine, an amino acid that supports additional roles than simply serving as a building block for protein synthesis. This is because methionine is the immediate precursor of S-adenosylmethionine (AdoMet), which plays numerous roles of being the major methyl-group donor in transmethylation reactions and an intermediate in the biosynthesis of polyamines and of the phytohormone ethylene. In addition, AdoMet has regulatory function in plants behaving as an allosteric activator of threonine synthase. Among the AdoMet-dependent reactions occurring in plants, methylation of cytosine residues in DNA has raised recent interest because impediment of this function alters plant morphology and induces homeotic alterations in flower organs. Also, AdoMet metabolism seems somehow implicated in plant growth via an as yet fully understood link with plant-growth hormones such as cytokinins and auxin and in plant pathogen interactions. Because of this central role in cellular metabolism, a precise knowledge of the biosynthetic pathways that are responsible for homeostatic regulation of methionine and AdoMet in plants has practical implications, particularly in herbicide design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a survey of microbial systems capable of generating unusual metabolite structural variability, Streptomyces venezuelae ATCC 15439 is notable in its ability to produce two distinct groups of macrolide antibiotics. Methymycin and neomethymycin are derived from the 12-membered ring macrolactone 10-deoxymethynolide, whereas narbomycin and pikromycin are derived from the 14-membered ring macrolactone, narbonolide. This report describes the cloning and characterization of the biosynthetic gene cluster for these antibiotics. Central to the cluster is a polyketide synthase locus (pikA) that encodes a six-module system comprised of four multifunctional proteins, in addition to a type II thioesterase (TEII). Immediately downstream is a set of genes for desosamine biosynthesis (des) and macrolide ring hydroxylation. The study suggests that Pik TEII plays a role in forming a metabolic branch through which polyketides of different chain length are generated, and the glycosyl transferase (encoded by desVII) has the ability to catalyze glycosylation of both the 12- and 14-membered ring macrolactones. Moreover, the pikC-encoded P450 hydroxylase provides yet another layer of structural variability by introducing regiochemical diversity into the macrolide ring systems. The data support the notion that the architecture of the pik gene cluster as well as the unusual substrate specificity of particular enzymes contributes to its ability to generate four macrolide antibiotics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A collection of 8,000 Arabidopsis thaliana plants carrying 48,000 insertions of the maize transposable element En-1 has been generated. This population was used for reverse genetic analyses to identify insertions in individual gene loci. By using a PCR-based screening protocol, insertions were found in 55 genes. En-1 showed no preference for transcribed or untranscribed regions nor for a particular orientation relative to the gene of interest. In several cases, En-1 was inserted within a few kilobases upstream or downstream of the gene. En-1 was mobilized from such positions into the respective gene to cause gene disruption. Knock-out alleles of genes involved in flavonoid biosynthesis were generated. One mutant line contained an En-1 insertion in the flavonol synthase gene (FLS) and showed drastically reduced levels of kaempferol. Allelism tests with other lines containing En-1 insertions in the flavanone 3-hydroxylase gene (F3H) demonstrated that TRANSPARENT TESTA 6 (TT6) encodes flavanone 3-hydroxylase. The f3h and fls null mutants complete the set of A. thaliana lines defective in early steps of the flavonoid pathway. These experiments demonstrate the efficiency of the screening method and gene disruption strategy used for assigning functions to genes defined only by sequence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The “parallel-up” packing in cellulose Iα and Iβ unit cells was experimentally demonstrated by a combination of direct-staining the reducing ends of cellulose chains and microdiffraction-tilting electron crystallographic analysis. Microdiffraction investigation of nascent bacterial cellulose microfibrils showed that the reducing end of the growing cellulose chains points away from the bacterium, and this provides direct evidence that polymerization by the cellulose synthase takes place at the nonreducing end of the growing cellulose chains. This mechanism is likely to be valid also for a number of processive glycosyltransferases such as chitin synthases, hyaluronan synthases, and proteins involved in the synthesis of nodulation factor backbones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The incorporation of [1-13C]- and [2,3,4,5-13C4]1-deoxy-d-xylulose into β-carotene, lutein, phytol, and sitosterol in a cell culture of Catharanthus roseus was analyzed by NMR spectroscopy. The labeling patterns of the isoprene precursors, isopentenyl pyrophosphate and dimethylallyl pyrophosphate, were obtained from the terpenes by a retrobiosynthetic approach. 13C Enrichment and 13C13C coupling patterns showed conclusively that 1-deoxy-d-xylulose and not mevalonate is the predominant isoprenoid precursor of phytol, β-carotene, and lutein. Label from 1-deoxyxylulose was also diverted to phytosterols to a minor extent (6% relative to carotene and phytol formation). The data demonstrate that the formation of isopentenyl pyrophosphate from pentulose occurs strictly by an intramolecular rearrangement process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leptin (OB), an adipocyte-secreted circulating hormone, and its receptor (OB-R) are key components of an endocrine loop that regulates mammalian body weight. In this report we have analyzed signal transduction activities of OB-R containing the fatty mutation [OB-R(fa)], a single amino acid substitution at position 269 (Gln → Pro) in the OB-R extracellular domain that results in the obese phenotype of the fatty rat. We find that this mutant receptor exhibits both ligand-independent transcriptional activation via interleukin 6 and hematopoietin receptor response elements and ligand-independent activation of signal transducer and activator of transcription (STAT) proteins 1 and 3. However, OB-R(fa) is unable to constitutively activate STAT5B and is highly impaired for ligand induced activation of STAT5B compared with OB-R(wt). Introduction of the fatty mutation into a OB-R/G-CSF-R chimera generates a receptor with constitutive character that is similar but distinct from that of OB-R(fa). Constitutive mutant OB-R(fa) receptor signaling is repressed by coexpression of OB-R(wt). The implications of an extracellular domain amino acid substitution generating a cytokine receptor with a partially constitutive phenotype are discussed both in terms of the mechanism of OB-R triggering and the biology of the fatty rat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Certain peptides derived from the α1 domain of the major histocompatibility class I antigen complex (MHC-I) inhibit receptor internalization, increasing the steady-state number of active receptors on the cell surface and thereby enhancing the sensitivity to hormones and other agonists. These peptides self-assemble, and they also bind to MHC-I at the same site from which they are derived, suggesting that they could bind to receptor sites with significant sequence similarity. Receptors affected by MHC-I peptides do, indeed, have such sequence similarity, as illustrated here by insulin receptor (IR) and insulin-like growth factor-1 receptor. A synthetic peptide with sequence identical to a certain extracellular receptor domain binds to that receptor in a ligand-dependent manner and inhibits receptor internalization. Moreover, each such peptide is selective for its cognate receptor. An antibody to the IR peptide not only binds to IR and competes with the peptide but also inhibits insulin-dependent internalization of IR. These observations, and binding studies with deletion mutants of IR, indicate that the sequence QILKELEESSF encoded by exon 10 plays a key role in IR internalization. Our results illustrate a principle for identifying receptor-specific sites of importance for receptor internalization, and for enhancing sensitivity to hormones and other agonists.