11 resultados para EXTINCTION DEBT

em National Center for Biotechnology Information - NCBI


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The fossil record of land plants is an obvious source of information on the dynamics of mass extinctions in the geological past. In conjunction with the end-Permian ecological crisis, ≈250 million years ago, palynological data from East Greenland reveal some unanticipated patterns. We document the significant time lag between terrestrial ecosystem collapse and selective extinction among characteristic Late Permian plants. Furthermore, ecological crisis resulted in an initial increase in plant diversity, instead of a decrease. Paradoxically, these floral patterns correspond to a “dead zone” in the end-Permian faunal record, characterized by a paucity of marine invertebrate megafossils. The time-delayed, end-Permian plant extinctions resemble modeled “extinction debt” responses of multispecies metapopulations to progressive habitat destruction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Widespread species- and genus-level extinctions of mammals in North America and Europe occurred during the last deglaciation [16,000–9,000 yr B.P. (by 14C)], a period of rapid and often abrupt climatic and vegetational change. These extinctions are variously ascribed to environmental change and overkill by human hunters. By contrast, plant extinctions since the Middle Pleistocene are undocumented, suggesting that plant species have been able to respond to environmental changes of the past several glacial/interglacial cycles by migration. We provide evidence from morphological studies of fossil cones and anatomical studies of fossil needles that a now-extinct species of spruce (Picea critchfieldii sp. nov.) was widespread in eastern North America during the Last Glacial Maximum. P. critchfieldii was dominant in vegetation of the Lower Mississippi Valley, and extended at least as far east as western Georgia. P. critchfieldii disappeared during the last deglaciation, and its extinction is not directly attributable to human activities. Similarly widespread plant species may be at risk of extinction in the face of future climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Homing endonuclease genes show super-Mendelian inheritance, which allows them to spread in populations even when they are of no benefit to the host organism. To test the idea that regular horizontal transmission is necessary for the long-term persistence of these genes, we surveyed 20 species of yeasts for the ω-homing endonuclease gene and associated group I intron. The status of ω could be categorized into three states (functional, nonfunctional, or absent), and status was not clustered on the host phylogeny. Moreover, the phylogeny of ω differed significantly from that of the host, strong evidence of horizontal transmission. Further analyses indicate that horizontal transmission is more common than transposition, and that it occurs preferentially between closely related species. Parsimony analysis and coalescent theory suggest that there have been 15 horizontal transmission events in the ancestry of our yeast species, through simulations indicate that this value is probably an underestimate. Overall, the data support a cyclical model of invasion, degeneration, and loss, followed by reinvasion, and each of these transitions is estimated to occur about once every 2 million years. The data are thus consistent with the idea that frequent horizontal transmission is necessary for the long-term persistence of homing endonuclease genes, and further, that this requirement limits these genes to organisms with easily accessible germ lines. The data also show that mitochondrial DNA sequences are transferred intact between yeast species; if other genes do not show such high levels of horizontal transmission, it would be due to lack of selection, rather than lack of opportunity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transcriptional silencing of genes transferred into hematopoietic stem cells poses one of the most significant challenges to the success of gene therapy. If the transferred gene is not completely silenced, a progressive decline in gene expression as the mice age often is encountered. These phenomena were observed to various degrees in mouse transplant experiments using retroviral vectors containing a human β-globin gene, even when cis-linked to locus control region derivatives. Here, we have investigated whether ex vivo preselection of retrovirally transduced stem cells on the basis of expression of the green fluorescent protein driven by the CpG island phosphoglycerate kinase promoter can ensure subsequent long-term expression of a cis-linked β-globin gene in the erythroid lineage of transplanted mice. We observed that 100% of mice (n = 7) engrafted with preselected cells concurrently expressed human β-globin and the green fluorescent protein in 20–95% of their RBC for up to 9.5 mo posttransplantation, the longest time point assessed. This expression pattern was successfully transferred to secondary transplant recipients. In the presence of β-locus control region hypersensitive site 2 alone, human β-globin mRNA expression levels ranged from 0.15% to 20% with human β-globin chains detected by HPLC. Neither the proportion of positive blood cells nor the average expression levels declined with time in transplanted recipients. Although suboptimal expression levels and heterocellular position effects persisted, in vivo stem cell gene silencing and age-dependent extinction of expression were avoided. These findings support the further investigation of this type of vector for the gene therapy of human hemoglobinopathies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advanced eusociality sometimes is given credit for the ecological success of termites, ants, some wasps, and some bees. Comprehensive study of bees fossilized in Baltic amber has revealed an unsuspected middle Eocene (ca. 45 million years ago) diversity of eusocial bee lineages. Advanced eusociality arose once in the bees with significant post-Eocene losses in diversity, leaving today only two advanced eusocial tribes comprising less than 2% of the total bee diversity, a trend analogous to that of hominid evolution. This pattern of changing diversity contradicts notions concerning the role of eusociality for evolutionary success in insects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theory suggests that the risk of extinction by mutation accumulation can be comparable to that by environmental stochasticity for an isolated population smaller than a few thousand individuals. Here we show that metapopulation structure, habitat loss or fragmentation, and environmental stochasticity can be expected to greatly accelerate the accumulation of mildly deleterious mutations, lowering the genetic effective size to such a degree that even large metapopulations may be at risk of extinction. Because of mutation accumulation, viable metapopulations may need to be far larger and better connected than would be required under just stochastic demography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current massive degradation of habitat and extinction of species is taking place on a catastrophically short timescale, and their effects will fundamentally reset the future evolution of the planet's biota. The fossil record suggests that recovery of global ecosystems has required millions or even tens of millions of years. Thus, intervention by humans, the very agents of the current environmental crisis, is required for any possibility of short-term recovery or maintenance of the biota. Many current recovery efforts have deficiencies, including insufficient information on the diversity and distribution of species, ecological processes, and magnitude and interaction of threats to biodiversity (pollution, overharvesting, climate change, disruption of biogeochemical cycles, introduced or invasive species, habitat loss and fragmentation through land use, disruption of community structure in habitats, and others). A much greater and more urgently applied investment to address these deficiencies is obviously warranted. Conservation and restoration in human-dominated ecosystems must strengthen connections between human activities, such as agricultural or harvesting practices, and relevant research generated in the biological, earth, and atmospheric sciences. Certain threats to biodiversity require intensive international cooperation and input from the scientific community to mitigate their harmful effects, including climate change and alteration of global biogeochemical cycles. In a world already transformed by human activity, the connection between humans and the ecosystems they depend on must frame any strategy for the recovery of the biota.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies on natural populations and harvesting biological resources have led to the view, commonly held, that (i) populations exhibiting chaotic oscillations run a high risk of extinction; and (ii) a decrease in emigration/exploitation may reduce the risk of extinction. Here we describe a simple ecological model with emigration/depletion that shows behavior in contrast to this. This model displays unusual dynamics of extinction and survival, where populations growing beyond a critical rate can persist within a band of high depletion rates, whereas extinction occurs for lower depletion rates. Though prior to extinction at lower depletion rates the population exhibits chaotic dynamics with large amplitudes of variation and very low minima, at higher depletion rates the population persists at chaos but with reduced variation and increased minima. For still higher values, within the band of persistence, the dynamics show period reversal leading to stability. These results illustrate that chaos does not necessarily lead to population extinction. In addition, the persistence of populations at high depletion rates has important implications in the considerations of strategies for the management of biological resources.