13 resultados para EXPRESSION PROFILING
em National Center for Biotechnology Information - NCBI
Resumo:
Hypoxia is important in both biomedical and environmental contexts and necessitates rapid adaptive changes in metabolic organization. Mammals, as air breathers, have a limited capacity to withstand sustained exposure to hypoxia. By contrast, some aquatic animals, such as certain fishes, are routinely exposed and resistant to severe environmental hypoxia. Understanding the changes in gene expression in fishes exposed to hypoxic stress could reveal novel mechanisms of tolerance that may shed new light on hypoxia and ischemia in higher vertebrates. Using cDNA microarrays, we have studied gene expression in a hypoxia-tolerant burrow-dwelling goby fish, Gillichthys mirabilis. We show that a coherent picture of a complex transcriptional response can be generated for a nonmodel organism for which sequence data were unavailable. We demonstrate that: (i) although certain shifts in gene expression mirror changes in mammals, novel genes are differentially expressed in fish; and (ii) tissue-specific patterns of expression reflect the different metabolic roles of tissues during hypoxia.
Resumo:
BodyMap is a human and mouse gene expression database that is based on site-directed 3′-expressed sequence tags generated at Osaka University. To date, it contains more than 300 000 tag sequences from 64 human and 39 mouse tissues. For the recent release, the precise anatomical expression patterns for more than half of the human gene entries were generated by introduced amplified fragment length polymorphism (iAFLP), which is a PCR-based high-throughput expression profiling method. The iAFLP data incorporated into BodyMap describe the relative contents of more than 12 000 transcripts across 30 tissue RNAs. In addition, a newly developed gene ranking system helps users obtain lists of genes that have desired expression patterns according to their significance. BodyMap supports complete transfer of unique data sets and provides analysis that is accessible through the WWW at http://bodymap.ims.u-tokyo.ac.jp.
Resumo:
We have systematically characterized gene expression patterns in 49 adult and embryonic mouse tissues by using cDNA microarrays with 18,816 mouse cDNAs. Cluster analysis defined sets of genes that were expressed ubiquitously or in similar groups of tissues such as digestive organs and muscle. Clustering of expression profiles was observed in embryonic brain, postnatal cerebellum, and adult olfactory bulb, reflecting similarities in neurogenesis and remodeling. Finally, clustering genes coding for known enzymes into 78 metabolic pathways revealed a surprising coordination of expression within each pathway among different tissues. On the other hand, a more detailed examination of glycolysis revealed tissue-specific differences in profiles of key regulatory enzymes. Thus, by surveying global gene expression by using microarrays with a large number of elements, we provide insights into the commonality and diversity of pathways responsible for the development and maintenance of the mammalian body plan.
Comprehensive copy number and gene expression profiling of the 17q23 amplicon in human breast cancer
Resumo:
The biological significance of DNA amplification in cancer is thought to be due to the selection of increased expression of a single or few important genes. However, systematic surveys of the copy number and expression of all genes within an amplified region of the genome have not been performed. Here we have used a combination of molecular, genomic, and microarray technologies to identify target genes for 17q23, a common region of amplification in breast cancers with poor prognosis. Construction of a 4-Mb genomic contig made it possible to define two common regions of amplification in breast cancer cell lines. Analysis of 184 primary breast tumors by fluorescence in situ hybridization on tissue microarrays validated these results with the highest amplification frequency (12.5%) observed for the distal region. Based on GeneMap'99 information, 17 known genes and 26 expressed sequence tags were localized to the contig. Analysis of genomic sequence identified 77 additional transcripts. A comprehensive analysis of expression levels of these transcripts in six breast cancer cell lines was carried out by using complementary DNA microarrays. The expression patterns varied from one cell line to another, and several overexpressed genes were identified. Of these, RPS6KB1, MUL, APPBP2, and TRAP240 as well as one uncharacterized expressed sequence tag were located in the two common amplified regions. In summary, comprehensive analysis of the 17q23 amplicon revealed a limited number of highly expressed genes that may contribute to the more aggressive clinical course observed in breast cancer patients with 17q23-amplified tumors.
Resumo:
To determine the genetic causes and molecular mechanisms responsible for neurobehavioral differences in mice, we used highly parallel gene expression profiling to detect genes that are differentially expressed between the 129SvEv and C57BL/6 mouse strains at baseline and in response to seizure. In addition, we identified genes that are differentially expressed in specific brain regions. We found that approximately 1% of expressed genes are differentially expressed between strains in at least one region of the brain and that the gene expression response to seizure is significantly different between the two inbred strains. The results lead to the identification of differences in gene expression that may account for distinct phenotypes in inbred strains and the unique functions of specific brain regions.
Resumo:
B cell diffuse large cell lymphoma (B-DLCL) is a heterogeneous group of tumors, based on significant variations in morphology, clinical presentation, and response to treatment. Gene expression profiling has revealed two distinct tumor subtypes of B-DLCL: germinal center B cell-like DLCL and activated B cell-like DLCL. In a separate study, we determined that B-DLCL can also be subdivided into two groups based on the presence or absence of ongoing Ig gene hypermutation. Here, we evaluated the correlation between these B-DLCL subtypes established by the two different methods. Fourteen primary B-DLCL cases were studied by gene expression profiling using DNA microarrays and for the presence of ongoing mutations in their Ig heavy chain gene. All seven cases classified as germinal center B cell-like DLCL by gene expression showed the presence of ongoing mutations in the Ig genes. Five of the seven cases classified by gene expression as activated B cell-like DLCL had no ongoing somatic mutations, whereas, in the remaining two cases, a single point mutation was observed in only 2 of 15 and 21 examined molecular clones of variable heavy (VH) chain gene, respectively. These two cases were distantly related to the rest of the activated B cell-like DLCL tumors by gene expression. Our findings validate the concept that lymphoid malignancies are derived from cells at discrete stages of normal lymphocyte maturation and that the malignant cells retain the genetic program of those normal cells.
Resumo:
A tetracycline-controlled gene expression system provides a powerful tool to dissect the functions of gene products. However, it often appears difficult to establish cell lines or transgenic animals stably expressing tetracycline-dependent transactivators, possibly as a result of toxicity of the transactivator domains used. In order to overcome this problem, we developed a novel tetracycline-dependent transactivator that works efficiently in mammalian cells. This transactivator is a fusion of the tet reverse repressor mutant and the transcriptional activating domain of human E2F4, which is ubiquitously expressed in vivo. We demonstrate here that this tetracycline-regulated gene expression system provides a two log transcriptional activation in mammalian cells as assessed by northern blot and luciferase analyses. Combining this system with green fluorescent protein reporter systems or microarray gene expression profiling will facilitate the study of gene function.
Resumo:
The Medicago Genome Initiative (MGI) is a database of EST sequences of the model legume Medicago truncatula. The database is available to the public and has resulted from a collaborative research effort between the Samuel Roberts Noble Foundation and the National Center for Genome Resources to investigate the genome of M.truncatula. MGI is part of the greater integrated Medicago functional genomics program at the Noble Foundation (http://www.noble .org), which is taking a global approach in studying the genetic and biochemical events associated with the growth, development and environmental interactions of this model legume. Our approach will include: large-scale EST sequencing, gene expression profiling, the generation of M.truncatula activation-tagged and promoter trap insertion mutants, high-throughput metabolic profiling, and proteome studies. These multidisciplinary information pools will be interfaced with one another to provide scientists with an integrated, holistic set of tools to address fundamental questions pertaining to legume biology. The public interface to the MGI database can be accessed at http://www.ncgr.org/research/mgi.
Resumo:
Gene expression profiling provides powerful analyses of transcriptional responses to cellular perturbation. In contrast to DNA array-based methods, reporter gene technology has been underused for this application. Here we describe a genomewide, genome-registered collection of Escherichia coli bioluminescent reporter gene fusions. DNA sequences from plasmid-borne, random fusions of E. coli chromosomal DNA to a Photorhabdus luminescens luxCDABE reporter allowed precise mapping of each fusion. The utility of this collection covering about 30% of the transcriptional units was tested by analyzing individual fusions representative of heat shock, SOS, OxyR, SoxRS, and cya/crp stress-responsive regulons. Each fusion strain responded as anticipated to environmental conditions known to activate the corresponding regulatory circuit. Thus, the collection mirrors E. coli's transcriptional wiring diagram. This genomewide collection of gene fusions provides an independent test of results from other gene expression analyses. Accordingly, a DNA microarray-based analysis of mitomycin C-treated E. coli indicated elevated expression of expected and unanticipated genes. Selected luxCDABE fusions corresponding to these up-regulated genes were used to confirm or contradict the DNA microarray results. The power of partnering gene fusion and DNA microarray technology to discover promoters and define operons was demonstrated when data from both suggested that a cluster of 20 genes encoding production of type I extracellular polysaccharide in E. coli form a single operon.
Resumo:
Epithelial–mesenchymal transitions (EMTs) are an essential manifestation of epithelial cell plasticity during morphogenesis, wound healing, and tumor progression. Transforming growth factor-β (TGF-β) modulates epithelial plasticity in these physiological contexts by inducing EMT. Here we report a transcriptome screen of genetic programs of TGF-β-induced EMT in human keratinocytes and propose functional roles for extracellular response kinase (ERK) mitogen-activated protein kinase signaling in cell motility and disruption of adherens junctions. We used DNA arrays of 16,580 human cDNAs to identify 728 known genes regulated by TGF-β within 4 hours after treatment. TGF-β-stimulated ERK signaling mediated regulation of 80 target genes not previously associated with this pathway. This subset is enriched for genes with defined roles in cell–matrix interactions, cell motility, and endocytosis. ERK-independent genetic programs underlying the onset of EMT involve key pathways and regulators of epithelial dedifferentiation, undifferentiated transitional and mesenchymal progenitor phenotypes, and mediators of cytoskeletal reorganization. The gene expression profiling approach delineates complex context-dependent signaling pathways and transcriptional events that determine epithelial cell plasticity controlled by TGF-β. Investigation of the identified pathways and genes will advance the understanding of molecular mechanisms that underlie tumor invasiveness and metastasis.
Resumo:
Neurotrophic factors such as nerve growth factor (NGF) promote a wide variety of responses in neurons, including differentiation, survival, plasticity, and repair. Such actions often require changes in gene expression. To identify the regulated genes and thereby to more fully understand the NGF mechanism, we carried out serial analysis of gene expression (SAGE) profiling of transcripts derived from rat PC12 cells before and after NGF-promoted neuronal differentiation. Multiple criteria supported the reliability of the profile. Approximately 157,000 SAGE tags were analyzed, representing at least 21,000 unique transcripts. Of these, nearly 800 were regulated by 6-fold or more in response to NGF. Approximately 150 of the regulated transcripts have been matched to named genes, the majority of which were not previously known to be NGF-responsive. Functional categorization of the regulated genes provides insight into the complex, integrated mechanism by which NGF promotes its multiple actions. It is anticipated that as genomic sequence information accrues the data derived here will continue to provide information about neurotrophic factor mechanisms.
Resumo:
Despite the importance of mitogen-activated protein kinase (MAPK) signaling in eukaryotic biology, the mechanisms by which signaling yields phenotypic changes are poorly understood. We have combined transcriptional profiling with genetics to determine how the Kss1 MAPK signaling pathway controls dimorphic development in Saccharomyces cerevisiae. This analysis identified dozens of transcripts that are regulated by the pathway, whereas previous work had identified only a single downstream target, FLO11. One of the MAPK-regulated genes is PGU1, which encodes a secreted enzyme that hydrolyzes polygalacturonic acid, a structural barrier to microbial invasion present in the natural plant substrate of S. cerevisiae. A third key transcriptional target is the G1 cyclin gene CLN1, a morphogenetic regulator that we show to be essential for pseudohyphal growth. In contrast, the homologous CLN2 cyclin gene is dispensable for development. Thus, the Kss1 MAPK cascade programs development by coordinately modulating a cell adhesion factor, a secreted host-destroying activity, and a specialized subunit of the Cdc28 cyclin-dependent kinase.
Resumo:
With the postgenome era rapidly approaching, new strategies for the functional analysis of proteins are needed. To date, proteomics efforts have primarily been confined to recording variations in protein level rather than activity. The ability to profile classes of proteins on the basis of changes in their activity would greatly accelerate both the assignment of protein function and the identification of potential pharmaceutical targets. Here, we describe the chemical synthesis and utility of an active-site directed probe for visualizing dynamics in the expression and function of an entire enzyme family, the serine hydrolases. By reacting this probe, a biotinylated fluorophosphonate referred to as FP-biotin, with crude tissue extracts, we quickly and with high sensitivity detect numerous serine hydrolases, many of which display tissue-restricted patterns of expression. Additionally, we show that FP-biotin labels these proteins in an activity-dependent manner that can be followed kinetically, offering a powerful means to monitor dynamics simultaneously in both protein function and expression.