13 resultados para EXOPLANET HD 80606B

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among the four subtypes of Hodgkin disease (HD), lymphocyte-predominant (LP) HD is now generally considered as a separate entity. The B cell nature of the typical Hodgkin and Reed–Sternberg (HRS) cells and their variants (L and H, lymphocytic and histiocytic cells) in LP HD has long been suspected, but the question of whether these cells represent a true tumor clone is unclear. We previously demonstrated clonal Ig gene rearrangements in one case of LP HD. In the present study, five cases of LP HD were analyzed by micromanipulation of single HRS cells from frozen tissue sections and DNA amplification of rearranged Ig heavy chain genes from those cells. Clonal V gene rearrangements harboring somatic mutations were detected in each case. In three cases ongoing somatic mutation was evident. This shows that HRS cells in LP HD are a clonal tumor population derived from germinal center B cells. The pattern of somatic mutation indicates that HRS cells in LP HD are selected for antibody expression. This, and the presence of ongoing mutation discriminates LP from classical HD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The α subunit (Gα) of heterotrimeric G proteins is a major determinant of signaling selectivity. The Gα structure essentially comprises a GTPase “Ras-like” domain (RasD) and a unique α-helical domain (HD). We used the vertebrate phototransduction model to test for potential functions of HD and found that the HD of the retinal transducin Gα (Gαt) and the closely related gustducin (Gαg), but not Gαi1, Gαs, or Gαq synergistically enhance guanosine 5′-γ[-thio]triphosphate bound Gαt (GαtGTPγS) activation of bovine rod cGMP phosphodiesterase (PDE). In addition, both HDt and HDg, but not HDi1, HDs, or HDq attenuate the trypsin-activated PDE. GαtGDP and HDt attenuation of trypsin-activated PDE saturate with similar affinities and to an identical 38% of initial activity. These data suggest that interaction of intact Gαt with the PDE catalytic core may be caused by the HD moiety, and they indicate an independent site(s) for the HD moiety of Gαt within the PDE catalytic core in addition to the sites for the inhibitory Pγ subunits. The HD moiety of GαtGDP is an attenuator of the activated catalytic core, whereas in the presence of activated GαtGTPγS the independently expressed HDt is a potent synergist. Rhodopsin catalysis of Gαt activation enhances the PDE activation produced by subsaturating levels of Gαt, suggesting a HD-moiety synergism from a transient conformation of Gαt. These results establish HD-selective regulations of vertebrate retinal PDE, and they provide evidence demonstrating that the HD is a modulatory domain. We suggest that the HD works in concert with the RasD, enhancing the efficiency of G protein signaling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To successfully navigate through the environment animals rely on information concerning their directional heading and location. Many cells within the postsubiculum and anterior thalamus discharge as a function of the animal’s head direction (HD), while many cells in the hippocampus discharge in relation to the animal’s location. We placed lesions in the hippocampus and recorded from HD cells in the postsubiculum and anterior thalamus. Lesions of the hippocampus did not disrupt the HD cell signal in either brain area, indicating that the HD cell signal must be generated by structures external to the hippocampus. In addition, each cell’s preferred firing direction remained stable across days when the lesioned animal was placed into a novel environment. This stability appeared to weaken after several weeks of nonexposure to the new enclosure for two out of five animals, and subsequently recorded cells from these two animals established a new angular relationship between the familiar and novel environments. Our results suggest that extra-hippocampal structures are capable of creating and maintaining a novel representation of the animal’s environmental context. This representation shares features in common with mnemonic processes involving episodic memory that until now were assumed to require an intact hippocampus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pax proteins, characterized by the presence of a paired domain, play key regulatory roles during development. The paired domain is a bipartite DNA-binding domain that contains two helix–turn–helix domains joined by a linker region. Each of the subdomains, the PAI and RED domains, has been shown to be a distinct DNA-binding domain. The PAI domain is the most critical, but in specific circumstances, the RED domain is involved in DNA recognition. We describe a Pax protein, originally called Lune, that is the product of the Drosophila eye gone gene (eyg). It is unique among Pax proteins, because it contains only the RED domain. eyg seems to play a role both in the organogenesis of the salivary gland during embryogenesis and in the development of the eye. A high-affinity binding site for the Eyg RED domain was identified by using systematic evolution of ligands by exponential enrichment techniques. This binding site is related to a binding site previously identified for the RED domain of the Pax-6 5a isoform. Eyg also contains another DNA-binding domain, a Prd-class homeodomain (HD), whose palindromic binding site is similar to other Prd-class HDs. The ability of Pax proteins to use the PAI, RED, and HD, or combinations thereof, may be one mechanism that allows them to be used at different stages of development to regulate various developmental processes through the activation of specific target genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Huntington's disease (HD) is an inherited neurodegenerative disorder caused by polyglutamine (polyQ) expansions in the huntingtin (Ht) protein. A hallmark of HD is the proteolytic production of an N-terminal fragment of Ht, containing the polyQ repeat, that forms aggregates in the nucleus and cytoplasm of affected neurons. Proteins with longer polyQ repeats aggregate more rapidly and cause disease at an earlier age, but the mechanism of aggregation and its relationship to disease remain unclear. To provide a new, genetically tractable model system for the study of Ht, we engineered yeast cells to express an N-terminal fragment of Ht with different polyQ repeat lengths of 25, 47, 72, or 103 residues, fused to green fluorescent protein. The extent of aggregation varied with the length of the polyQ repeat: at the two extremes, most HtQ103 protein coalesced into a single large cytoplasmic aggregate, whereas HtQ25 exhibited no sign of aggregation. Mutations that inhibit the ubiquitin/proteasome pathway at three different steps had no effect on the aggregation of Ht fragments in yeast, suggesting that the ubiquitination of Ht previously noted in mammalian cells may not inherently be required for polyQ length-dependent aggregation. Changing the expression levels of a wide variety of chaperone proteins in yeast neither increased nor decreased Ht aggregation. However, Sis1, Hsp70, and Hsp104 overexpression modulated aggregation of HtQ72 and HtQ103 fragments. More dramatically, the deletion of Hsp104 virtually eliminated it. These observations establish yeast as a system for studying the causes and consequences of polyQ-dependent Ht aggregation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An initial stage of fibrillogenesis in solutions of glutathione S-transferase-huntingtin (GST-HD) fusion proteins has been studied by using dynamic light scattering. Two GST-HD systems with poly-l-glutamine (polyGln) extensions of different lengths (20 and 51 residues) have been examined. For both systems, kinetics of z-average translation diffusion coefficients (Dapp) and their angular dependence have been obtained. Our data reveal that aggregation does occur in both GST-HD51 and GST-HD20 solutions, but that it is much more pronounced in the former. Thus, our approach provides a powerful tool for the quantitative assay of GST-HD fibrillogenesis in vitro.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Loss of neurotransmitter receptors, especially glutamate and dopamine receptors, is one of the pathologic hallmarks of brains of patients with Huntington disease (HD). Transgenic mice that express exon 1 of an abnormal human HD gene (line R6/2) develop neurologic symptoms at 9–11 weeks of age through an unknown mechanism. Analysis of glutamate receptors (GluRs) in symptomatic 12-week-old R6/2 mice revealed decreases compared with age-matched littermate controls in the type 1 metabotropic GluR (mGluR1), mGluR2, mGluR3, but not the mGluR5 subtype of G protein-linked mGluR, as determined by [3H]glutamate receptor binding, protein immunoblotting, and in situ hybridization. Ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and kainate receptors were also decreased, while N-methyl-d-aspartic acid receptors were not different compared with controls. Other neurotransmitter receptors known to be affected in HD were also decreased in R6/2 mice, including dopamine and muscarinic cholinergic, but not γ-aminobutyric acid receptors. D1-like and D2-like dopamine receptor binding was drastically reduced to one-third of control in the brains of 8- and 12-week-old R6/2 mice. In situ hybridization indicated that mGluR and D1 dopamine receptor mRNA were altered as early as 4 weeks of age, long prior to the onset of clinical symptoms. Thus, altered expression of neurotransmitter receptors precedes clinical symptoms in R6/2 mice and may contribute to subsequent pathology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Huntington's disease (HD) is a neurodegenerative disease caused by polyglutamine expansion in the protein huntingtin (htt). Pathogenesis in HD appears to involve the formation of ubiquitinated neuronal intranuclear inclusions containing N-terminal mutated htt, abnormal protein interactions, and the aggregate sequestration of a variety of proteins (noticeably, transcription factors). To identify novel htt-interacting proteins in a simple model system, we used a yeast two-hybrid screen with a Caenorhabditis elegans activation domain library. We found a predicted WW domain protein (ZK1127.9) that interacts with N-terminal fragments of htt in two-hybrid tests. A human homologue of ZK1127.9 is CA150, a transcriptional coactivator with a N-terminal insertion that contains an imperfect (Gln-Ala)38 tract encoded by a polymorphic repeat DNA. CA150 interacted in vitro with full-length htt from lymphoblastoid cells. The expression of CA150, measured immunohistochemically, was markedly increased in human HD brain tissue compared with normal age-matched human brain tissue, and CA150 showed aggregate formation with partial colocalization to ubiquitin-positive aggregates. In 432 HD patients, the CA150 repeat length explains a small, but statistically significant, amount of the variability in the onset age. Our data suggest that abnormal expression of CA150, mediated by interaction with polyglutamine-expanded htt, may alter transcription and have a role in HD pathogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This investigation was pursued to test the use of intracellular antibodies (intrabodies) as a means of blocking the pathogenesis of Huntington's disease (HD). HD is characterized by abnormally elongated polyglutamine near the N terminus of the huntingtin protein, which induces pathological protein–protein interactions and aggregate formation by huntingtin or its exon 1-containing fragments. Selection from a large human phage display library yielded a single-chain Fv (sFv) antibody specific for the 17 N-terminal residues of huntingtin, adjacent to the polyglutamine in HD exon 1. This anti-huntingtin sFv intrabody was tested in a cellular model of the disease in which huntingtin exon 1 had been fused to green fluorescent protein (GFP). Expression of expanded repeat HD-polyQ-GFP in transfected cells shows perinuclear aggregation similar to human HD pathology, which worsens with increasing polyglutamine length; the number of aggregates in these transfected cells provided a quantifiable model of HD for this study. Coexpression of anti-huntingtin sFv intrabodies with the abnormal huntingtin-GFP fusion protein dramatically reduced the number of aggregates, compared with controls lacking the intrabody. Anti-huntingtin sFv fused with a nuclear localization signal retargeted huntingtin analogues to cell nuclei, providing further evidence of the anti-huntingtin sFv specificity and of its capacity to redirect the subcellular localization of exon 1. This study suggests that intrabody-mediated modulation of abnormal neuronal proteins may contribute to the treatment of neurodegenerative diseases such as HD, Alzheimer's, Parkinson's, prion disease, and the spinocerebellar ataxias.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nearly all metazoan homeodomains (HDs) possess DNA binding targets that are related by the presence of a TAAT sequence. We use an in vitro genetic DNA binding site selection assay to refine our understanding of the amino acid determinants for the recognition of the TAAT site. Superimposed upon the conserved ability of metazoan HDs to recognize a TAAT core is a difference in their preference for the bases that lie immediately 3' to it. Amino acid position 50 of the HD has been shown to discriminate among these base pairs, and structural studies have suggested that water-mediated hydrogen bonds and van der Waals contacts underlie for this ability. Here, we show that each of six amino acids tested at position 50 can confer a distinct DNA binding specificity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Huntington's disease (HD) is an inherited neurodegenerative disorder associated with expansion of a CAG repeat in the IT15 gene. The IT15 gene is translated to a protein product termed huntingtin that contains a polyglutamine (polyGln) tract. Recent investigations indicate that the cause of HD is expansion of the polyGln tract. However, the function of huntingtin and how the expanded polyGln tract causes HD is not known. We investigate potential protein-protein interactions of huntingtin using affinity resins. Huntingtin from brain extracts is retained on calmodulin(CAM)-Sepharose in a calcium-dependent fashion. We purify rat huntingtin to apparent homogeneity using a combination of DEAE-cellulose column chromatography, ammonium sulfate precipitation, and preparative SDS/PAGE. Purified rat huntingtin does not interact with CAM directly as revealed by 125I-CAM overlay. Huntingtin forms a large CAM-containing complex of over 1,000 kDa in the presence of calcium, which partially disassociates in the absence of calcium. Furthermore, an increased amount of mutant huntingtin from HD patient brains is retained on CAM-Sepharose compared to normal huntingtin from control patient brains, and the mutant allele is preferentially retained on CAM-Sepharose in the absence of calcium. These results suggest that huntingtin interacts with other proteins including CAM and that the expansion of polyGln alters this interaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Huntington disease (HD) phenotype is associated with expansion of a trinucleotide repeat in the IT15 gene, which is predicted to encode a 348-kDa protein named huntington. We used polyclonal and monoclonal anti-fusion protein antibodies to identify native huntingtin in rat, monkey, and human. Western blots revealed a protein with the expected molecular weight which is present in the soluble fraction of rat and monkey brain tissues and lymphoblastoid cells from control cases. In lymphoblastoid cell lines from juvenile-onset heterozygote HD cases, both normal and mutant huntingtin are expressed, and increasing repeat expansion leads to lower levels of the mutant protein. Immunocytochemistry indicates that huntingtin is located in neurons throughout the brain, with the highest levels evident in larger neurons. In the human striatum, huntingtin is enriched in a patch-like distribution, potentially corresponding to the first areas affected in HD. Subcellular localization of huntingtin is consistent with a cytosolic protein primarily found in somatodendritic regions. Huntingtin appears to particularly associate with microtubules, although some is also associated with synaptic vesicles. On the basis of the localization of huntingtin in association with microtubules, we speculate that the mutation impairs the cytoskeletal anchoring or transport of mitochondria, vesicles, or other organelles or molecules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although the gene defect responsible for Huntington disease (HD) has recently been identified, the pathogenesis of the disease remains obscure. One potential mechanism is that the gene defect may lead to an impairment of energy metabolism followed by slow excitotoxic neuronal injury. In the present study we examined whether chronic administration of 3-nitropropionic acid (3-NP), an irreversible inhibitor of succinate dehydrogenase, can replicate the neuropathologic and clinical features of HD in nonhuman primates. After 3-6 weeks of 3-NP administration, apomorphine treatment induced a significant increase in motor activity as compared with saline-treated controls. Animals showed both choreiform movements, as well as foot and limb dystonia, which are characteristic of HD. More prolonged 3-NP treatment in two additional primates resulted in spontaneous dystonia and dyskinesia accompanied by lesions in the caudate and putamen seen by magnetic resonance imaging. Histologic evaluation showed that there was a depletion of calbindin neurons, astrogliosis, sparing of NADPH-diaphorase neurons, and growth-related proliferative changes in dendrites of spiny neurons similar to changes in HD. The striosomal organization of the striatum and the nucleus accumbens were spared. These findings show that chronic administration of 3-NP to nonhuman primates can replicate many of the characteristic motor and histologic features of HD, further strengthening the possibility that a subtle impairment of energy metabolism may play a role in its pathogenesis.