5 resultados para EXCHANGE NMR
em National Center for Biotechnology Information - NCBI
Resumo:
NMR investigations have been carried out of complexes between bovine chymotrypsin Aα and a series of four peptidyl trifluoromethyl ketones, listed here in order of increasing affinity for chymotrypsin: N-Acetyl-l-Phe-CF3, N-Acetyl-Gly-l-Phe-CF3, N-Acetyl-l-Val-l-Phe-CF3, and N-Acetyl-l-Leu-l-Phe-CF3. The D/H fractionation factors (φ) for the hydrogen in the H-bond between His 57 and Asp 102 (His 57-Hδ1) in these four complexes at 5°C were in the range φ = 0.32–0.43, expected for a low-barrier hydrogen bond. For this series of complexes, measurements also were made of the chemical shifts of His 57-Hɛ1 (δ2,2-dimethylsilapentane-5-sulfonic acid 8.97–9.18), the exchange rate of the His 57-Hδ1 proton with bulk water protons (284–12.4 s−1), and the activation enthalpies for this hydrogen exchange (14.7–19.4 kcal⋅mol−1). It was found that the previously noted correlations between the inhibition constants (Ki 170–1.2 μM) and the chemical shifts of His 57-Hδ1 (δ2,2-dimethylsilapentane-5-sulfonic acid 18.61–18.95) for this series of peptidyl trifluoromethyl ketones with chymotrypsin [Lin, J., Cassidy, C. S. & Frey, P. A. (1998) Biochemistry 37, 11940–11948] could be extended to include the fractionation factors, hydrogen exchange rates, and hydrogen exchange activation enthalpies. The results support the proposal of low barrier hydrogen bond-facilitated general base catalysis in the addition of Ser 195 to the peptidyl carbonyl group of substrates in the mechanism of chymotrypsin-catalyzed peptide hydrolysis. Trends in the enthalpies for hydrogen exchange and the fractionation factors are consistent with a strong, double-minimum or single-well potential hydrogen bond in the strongest complexes. The lifetimes of His 57-Hδ1, which is solvent shielded in these complexes, track the strength of the hydrogen bond. Because these lifetimes are orders of magnitude shorter than those of the complexes themselves, the enzyme must have a pathway for hydrogen exchange at this site that is independent of dissociation of the complexes.
Resumo:
Horse ferricytochrome c (cyt c) undergoes exchange of one of its axial heme ligands (Met-80) for one or more non-native ligands under denaturing conditions. We have used 1H NMR spectroscopy to detect two conformations of paramagnetic cyt c with non-native heme ligation through a range of urea concentrations. One non-native form is an equilibrium unfolding intermediate observed under partially denaturing conditions and is attributed to replacement of Met-80 with one or more Lys side chains. The second non-native form, in which the native Met ligand is replaced by a His, is observed under strongly denaturing conditions. Thermodynamic analysis of these data indicates a relatively small ΔG (17 kJ/mol) for the transition from native to the Lys-ligated intermediate and a significantly larger ΔG (47 kJ/mol) for the transition from native to the His-ligated species. Although CD and fluorescence data indicate that the equilibrium unfolding of cyt c is a two-state process, these NMR results implicate an intermediate with His-Lys ligation.
Resumo:
Familial amyloidosis–Finnish type (FAF) results from a single mutation at residue 187 (D187N or D187Y) within domain 2 of the actin-regulating protein gelsolin. The mutation somehow allows a masked cleavage site to be exposed, leading to the first step in the formation of an amyloidogenic fragment. We have performed NMR experiments investigating structural and dynamic changes between wild-type (WT) and D187N gelsolin domain 2 (D2). On mutation, no significant structural or dynamic changes occur at or near the cleavage site. Areas in conformational exchange are observed between β-strand 4 and α-helix 1 and within the loop region following β-strand 5. Chemical shift differences are noted along the face of α-helix 1 that packs onto the β-sheet, suggesting an altered conformation. Conformational changes within these areas can have an effect on actin binding and may explain why D187N gelsolin is inactive. {1H-15N} nuclear Overhauser effect and chemical shift data suggest that the C-terminal tail of D187N gelsolin D2 is less structured than WT by up to six residues. In the crystal structure of equine gelsolin, the C-terminal tail of D2 lies across a large cleft between domains 1 and 2 where the masked cleavage site sits. We propose that the D187N mutation destabilizes the C-terminal tail of D2 resulting in a more exposed cleavage site leading to the first proteolysis step in the formation of the amyloidogenic fragment.
Resumo:
31P NMR magnetization transfer measurements have been used to measure the steady state flux between Pi and ATP in yeast cells genetically modified to overexpress an adenine nucleotide translocase isoform. An increase in Pi -> ATP flux and apparent ratio of moles of ATP synthesized/atoms of oxygen consumed (P:O ratio), when these cells were incubated with glucose, demonstrated that the reactions catalyzed by the translocase and F1F0 ATP synthase were readily reversible in vivo. However, when the same cells were incubated with ethanol alone, translocase overexpression had no effect on the measured Pi -> ATP flux or apparent P:O ratio, suggesting that the synthase was now operating irreversibly. This change was accompanied by an increase in the intracellular ADP concentration. These observations are consistent with a model proposed for the kinetic control of mitochondrial ATP synthesis, which was based on isotope exchange measurements with isolated mammalian mitochondria [LaNoue, K. F., Jeffries, F. M. H. & Radda, G. K. (1986) Biochemistry 25, 7667-7675].
Resumo:
When NMR hydrogen exchange was used previously to monitor the kinetics of RNase A unfolding, some peptide NH protons were found to show EX2 exchange (detected by base catalysis) in addition to the expected EX1 exchange, whose rate is limited by the kinetic unfolding process. In earlier work, two groups showed independently that a restricted two-process model successfully fits published hydrogen exchange rates of native RNase A in the range 0-0.7 M guanidinium chloride. We find that this model predicts properties that are very different from the observed properties of the EX2 exchange reactions of RNase A in conditions where guanidine-induced unfolding takes place. The model predicts that EX2 exchange should be too fast to measure by the technique used, whereas it is readily measurable. Possible explanations for the contradiction are considered here, and we show that removing the restriction from the earlier two-process model is sufficient to resolve the contradiction; instead of specifying that exchange caused by global unfolding occurs by the EX2 mechanism, we allow it to occur by the general mechanism, which includes both the EX1 and EX2 cases. It is logical to remove this restriction because global unfolding of RNase A is known to give rise to EX1 exchange in these unfolding conditions. Resolving the contradiction makes it possible to determine whether populated unfolding intermediates contribute to the EX2 exchange, and this question is considered elsewhere. The results and simulations indicate that moderate or high denaturant concentrations readily give rise to EX1 exchange in native proteins. Earlier studies showed that hydrogen exchange in native proteins typically occurs by the EX2 mechanism but that high temperatures or pH values above 7 may give rise to EX1 exchange. High denaturant concentrations should be added to the list of variables likely to cause EX1 exchange.