4 resultados para EXCHANGE CURRENT
em National Center for Biotechnology Information - NCBI
Resumo:
Current global phylogenies are built predominantly on rRNA sequences. However, an experimental system for studying the evolution of rRNA is not readily available, mainly because the rRNA genes are highly repeated in most experimental organisms. We have constructed an Escherichia coli strain in which all seven chromosomal rRNA operons are inactivated by deletions spanning the 16S and 23S coding regions. A single E. coli rRNA operon carried by a multicopy plasmid supplies 16S and 23S rRNA to the cell. By using this strain we have succeeded in creating microorganisms that contain only a foreign rRNA operon derived from either Salmonella typhimurium or Proteus vulgaris, microorganisms that have diverged from E. coli about 120–350 million years ago. We also were able to replace the E. coli rRNA operon with an E. coli/yeast hybrid one in which the GTPase center of E. coli 23S rRNA had been substituted by the corresponding domain from Saccharomyces cerevisiae. These results suggest that, contrary to common belief, coevolution of rRNA with many other components in the translational machinery may not completely preclude the horizontal transfer of rRNA genes.
Resumo:
Varying concentrations of helium-oxygen (heliox) mixtures were evaluated in mechanically ventilated children with bronchiolitis. We hypothesized that, with an increase in the helium:oxygen ratio, and therefore a decrease in gas density, ventilation and oxygenation would improve in children with bronchiolitis. Ten patients, aged 1-9 months, were mechanically ventilated in synchronized intermittent mandatory ventilation (SIMV) mode with the following gas mixtures delivered at 15-min intervals: 50%/50% nitrogen/oxygen, 50%/50% heliox, 60%/40% heliox, 70%/30% heliox, and return to 50%/50% nitrogen/oxygen. The use of different heliox mixtures compared with 50%/50% nitrogen/oxygen in mechanically ventilated children with bronchiolitis did not result in a significant or noticeable decrease in ventilation or oxygenation.
Resumo:
Proceedings of the National Academy of Sciences Colloquium on the roles of homologous recombination in DNA replication are summarized. Current findings in experimental systems ranging from bacteriophages to mammalian cell lines substantiate the idea that homologous recombination is a system supporting DNA replication when either the template DNA is damaged or the replication machinery malfunctions. There are several lines of supporting evidence: (i) DNA replication aggravates preexisting DNA damage, which then blocks subsequent replication; (ii) replication forks abandoned by malfunctioning replisomes become prone to breakage; (iii) mutants with malfunctioning replisomes or with elevated levels of DNA damage depend on homologous recombination; and (iv) homologous recombination primes DNA replication in vivo and can restore replication fork structures in vitro. The mechanisms of recombinational repair in bacteriophage T4, Escherichia coli, and Saccharomyces cerevisiae are compared. In vitro properties of the eukaryotic recombinases suggest a bigger role for single-strand annealing in the eukaryotic recombinational repair.