3 resultados para EULER OBSTRUCTION

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study solutions of the two-dimensional quasi-geostrophic thermal active scalar equation involving simple hyperbolic saddles. There is a naturally associated notion of simple hyperbolic saddle breakdown. It is proved that such breakdown cannot occur in finite time. At large time, these solutions may grow at most at a quadruple-exponential rate. Analogous results hold for the incompressible three-dimensional Euler equation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let E be a modular elliptic curve over ℚ, without complex multiplication; let p be a prime number where E has good ordinary reduction; and let F∞ be the field obtained by adjoining to ℚ all p-power division points on E. Write G∞ for the Galois group of F∞ over ℚ. Assume that the complex L-series of E over ℚ does not vanish at s = 1. If p ⩾ 5, we make a precise conjecture about the value of the G∞-Euler characteristic of the Selmer group of E over F∞. If one makes a standard conjecture about the behavior of this Selmer group as a module over the Iwasawa algebra, we are able to prove our conjecture. The crucial local calculations in the proof depend on recent joint work of the first author with R. Greenberg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss the relationship among certain generalizations of results of Hida, Ribet, and Wiles on congruences between modular forms. Hida’s result accounts for congruences in terms of the value of an L-function, and Ribet’s result is related to the behavior of the period that appears there. Wiles’ theory leads to a class number formula relating the value of the L-function to the size of a Galois cohomology group. The behavior of the period is used to deduce that a formula at “nonminimal level” is obtained from one at “minimal level” by dropping Euler factors from the L-function.