5 resultados para ENERGY RANGE

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The state-to-state transfer of rotational and vibrational energy has been studied for S1 glyoxal (CHOCHO) in collisions with D2, N2, CO and C2H4 using crossed molecular beams. A laser is used to pump glyoxal seeded in He to its S1 zero point level with zero angular momentum about its top axis (K′ = 0). The inelastic scattering to each of at least 26 S1 glyoxal rotational and rovibrational levels is monitored by dispersed S1–S0 fluorescence. Various collision partners are chosen to investigate the relative influences of reduced mass and the collision pair interaction potential on the competition among the energy transfer channels. When the data are combined with that obtained previously from other collision partners whose masses range from 2 to 84 amu, it is seen that the channel competition is controlled primarily by the kinematics of the collisional interaction. Variations in the intermolecular potential play strictly a secondary role.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacterial photosynthesis relies on the interplay between light harvesting and electron transfer complexes, all of which are located within the intracytoplasmic membrane. These complexes capture and transfer solar energy, which is used to generate a proton gradient. In this study, we identify one of the factors that determines the organization of these complexes. We undertook a comparison of the organization of the light-harvesting complex 1 (LH1)/reaction center (RC) cores in the LH2− mutant of Rhodobacter sphaeroides in the presence or absence of the PufX protein. From polarized absorption spectra on oriented membranes, we conclude that PufX induces a specific orientation of the reaction center in the LH1 ring, as well as the formation of a long-range regular array of LH1-RC cores in the photosynthetic membrane. From our data, we have constructed a precise model of how the RC is positioned within the LH1 ring relative to the long (orientation) axis of the photosynthetic membrane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a novel type of spectral diffusion experiment in the millikelvin range to characterize the energy landscape of a protein as compared with that of a glass. We measure the time evolution of spectral holes for more than 300 hr after well-defined initial nonequilibrium conditions. We show that the model of noninteracting two-level systems can describe spectral diffusion in the glass, but fails for the protein. Our results further demonstrate that randomness in the energy landscape of a protein shows features of organization. There are “deep minimum” states separated by barriers, the heights of which we are able to estimate. The energy landscape of a glass is featureless by comparison.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By equilibrating condensed DNA arrays against reservoirs of known osmotic stress and examining them with several structural probes, it has been possible to achieve a detailed thermodynamic and structural characterization of the change between two distinct regions on the liquid-crystalline phase diagram: (i) a higher density hexagonally packed region with long-range bond orientational order in the plane perpendicular to the average molecular direction and (ii) a lower density cholesteric region with fluid-like positional order. X-ray scattering on highly ordered DNA arrays at high density and with the helical axis oriented parallel to the incoming beam showed a sixfold azimuthal modulation of the first-order diffraction peak that reflects the macroscopic bond-orientational order. Transition to the less-dense cholesteric phase through osmotically controlled swelling shows the loss of this bond orientational order, which had been expected from the change in optical birefringence patterns and which is consistent with a rapid onset of molecular positional disorder. This change in order was previously inferred from intermolecular force measurements and is now confirmed by 31P NMR. Controlled reversible swelling and compaction under osmotic stress, spanning a range of densities between approximately 120 mg/ml to approximately 600 mg/ml, allow measurement of the free-energy changes throughout each phase and at the phase transition, essential information for theories of liquid-crystalline states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phase transition for turbulent diffusion, reported by Avellaneda and Majda [Avellaneda, M. & Majda, A. J. (1994) Philos. Trans. R. Soc. London A 346, 205-233, and several earlier papers], is traced to a modeling assumption in which the energy spectrum of the turbulent fluid is singularly dependent on the viscosity in the inertial range. Phenomenological models of turbulence and intermittency, by contrast, require that the energy spectrum be independent of the viscosity in the inertial range. When the energy spectrum is assumed to be consistent with the phenomenological models, there is no phase transition for turbulent diffusion.