10 resultados para EGTA

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

To understand the structure, role, and regulation of individual Ca2+ pumps in plants, we have used yeast as a heterologous expression system to test the function of a gene from Arabidopsis thaliana (ECA1). ECA1 encoded a 116-kDa polypeptide that has all the conserved domains common to P-type Ca2+ pumps (EC 3.6.1.38). The amino acid sequence shared more identity with sarcoplasmic/endoplasmic reticulum (53%) than with plasma membrane (32%) Ca2+ pumps. Yeast mutants defective in a Golgi Ca2+ pump (pmr1) or both Golgi and vacuolar Ca2+ pumps (pmr1 pmc1 cnb1) were sensitive to growth on medium containing 10 mM EGTA or 3 mM Mn2+. Expression of ECA1 restored growth of either mutant on EGTA. Membranes were isolated from the pmr1 pmc1 cnb1 mutant transformed with ECA1 to determine if the ECA1 polypeptide (ECA1p) could be phosphorylated as intermediates of the reaction cycle of Ca2+-pumping ATPases. In the presence of [γ-32P]ATP, ECA1p formed a Ca2+-dependent [32P]phosphoprotein of 106 kDa that was sensitive to hydroxylamine. Cyclopiazonic acid, a blocker of animal sarcoplasmic/endoplasmic reticulum Ca2+ pumps, inhibited the formation of the phosphoprotein, whereas thapsigargin did not. Immunoblotting with an antibody against the carboxyl tail showed that ECA1p was associated mainly with the endoplasmic reticulum membranes isolated from Arabidopsis plants. The results support the model that ECA1 encodes an endoplasmic reticulum-type Ca2+ pump in Arabidopsis. The ability of ECA1p to restore growth of mutant pmr1 on medium containing Mn2+, and the formation of a Mn2+-dependent phosphoprotein suggested that ECA1p may also regulate Mn2+ homeostasis by pumping Mn2+ into endomembrane compartments of plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Yeast Sec22p participates in both anterograde and retrograde vesicular transport between the endoplasmic reticulum (ER) and the Golgi apparatus by functioning as a v-SNARE (soluble N-ethylmaleimide-sensitive factor [NSF] attachment protein receptor) of transport vesicles. Three mammalian proteins homologous to Sec22p have been identified and are referred to as Sec22a, Sec22b/ERS-24, and Sec22c, respectively. The existence of three homologous proteins in mammalian cells calls for detailed cell biological and functional examinations of each individual protein. The epitope-tagged forms of all three proteins have been shown to be primarily associated with the ER, although functional examination has not been carefully performed for any one of them. In this study, using antibodies specific for Sec22b/ERS-24, it is revealed that endogenous Sec22b/ERS-24 is associated with vesicular structures in both the perinuclear Golgi and peripheral regions. Colabeling experiments for Sec22b/ERS-24 with Golgi mannosidase II, the KDEL receptor, and the envelope glycoprotein G (VSVG) of vesicular stomatitis virus (VSV) en route from the ER to the Golgi under normal, brefeldin A, or nocodazole-treated cells suggest that Sec22b/ERS-24 is enriched in the pre-Golgi intermediate compartment (IC). In a well-established semi-intact cell system that reconstitutes transport from the ER to the Golgi, transport of VSVG is inhibited by antibodies against Sec22b/ERS-24. EGTA is known to inhibit ER–Golgi transport at a stage after vesicle/transport intermediate docking but before the actual fusion event. Antibodies against Sec22b/ERS-24 inhibit ER–Golgi transport only when they are added before the EGTA-sensitive stage. Transport of VSVG accumulated in pre-Golgi IC by incubation at 15°C is also inhibited by Sec22b/ERS-24 antibodies. Morphologically, VSVG is transported from the ER to the Golgi apparatus via vesicular intermediates that scatter in the peripheral as well as the Golgi regions. In the presence of antibodies against Sec22b/ERS-24, VSVG is seen to accumulate in these intermediates, suggesting that Sec22b/ERS-24 functions at the level of the IC in ER–Golgi transport.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recycling of vesicles of the regulated secretory pathway presumably involves passage through an early endosomal compartment as an intermediate step. To learn more about the involvement of endosomes in the recycling of synaptic and secretory vesicles we studied in vitro fusion of early endosomes derived from pheochromocytoma (PC12) cells. Fusion was not affected by cleavage of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins synaptobrevin and syntaxin 1 that operate at the exocytotic limb of the pathway. Furthermore, fusion was inhibited by the fast Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetra-acetic acid but not by the slow Ca2+ chelator EGTA. Endosome fusion was restored by the addition of Ca2+ with an optimum at a free Ca2+ concentration of 0.3 × 10−6 M. Other divalent cations did not substitute for Ca2+. A membrane-permeant EGTA derivative caused inhibition of fusion, which was reversed by addition of Ca2+. We conclude that the fusion of early endosomes participating in the recycling of synaptic and neurosecretory vesicles is mediated by a set of SNAREs distinct from those involved in exocytosis and requires the local release of Ca2+ from the endosomal interior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(RS)-2-cis, 4-trans-abscisic acid (ABA), a naturally occurring plant stress hormone, elicited rapid agonist-specific changes in myo-inositol hexakisphosphate (InsP6) measured in intact guard cells of Solanum tuberosum (n = 5); these changes were not reproduced by (RS)-2-trans, 4-trans-abscisic acid, an inactive stereoisomer of ABA (n = 4). The electrophysiological effects of InsP6 were assessed on both S. tuberosum (n = 14) and Vicia faba (n = 6) guard cell protoplasts. In both species, submicromolar concentrations of InsP6, delivered through the patch electrode, mimicked the inhibitory effects of ABA and internal calcium (Cai2+) on the inward rectifying K+ current, IK,in, in a dose-dependent manner. Steady state block of IK,in by InsP6 was reached much more quickly in Vicia (3 min at ≈1 μM) than Solanum (20–30 min). The effects of InsP6 on IK,in were specific to the myo-inositol isomer and were not elicited by other conformers of InsP6 (e.g., scyllo- or neo-). Chelation of Ca2+ by inclusion of 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid or EGTA in the patch pipette together with InsP6 prevented the inhibition of IK,in, suggesting that the effect is Ca2+ dependent. InsP6 was ≈100-fold more potent than Ins(1,4,5)P3 in modulating IK,in. Thus ABA increases InsP6 in guard cells, and InsP6 is a potent Ca2+-dependent inhibitor of IK,in. Taken together, these results suggest that InsP6 may play a major role in the physiological response of guard cells to ABA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

GABAergic (GABA = γ-aminobutyric acid) neurons from different brain regions contain high levels of parvalbumin, both in their soma and in their neurites. Parvalbumin is a slow Ca2+ buffer that may affect the amplitude and time course of intracellular Ca2+ transients in terminals after an action potential, and hence may regulate short-term synaptic plasticity. To test this possibility, we have applied paired-pulse stimulations (with 30- to 300-ms intervals) at GABAergic synapses between interneurons and Purkinje cells, both in wild-type (PV+/+) mice and in parvalbumin knockout (PV−/−) mice. We observed paired-pulse depression in PV+/+ mice, but paired-pulse facilitation in PV−/− mice. In paired recordings of connected interneuron-Purkinje cells, dialysis of the presynaptic interneuron with the slow Ca2+ buffer EGTA (1 mM) rescues paired-pulse depression in PV−/− mice. These data show that parvalbumin potently modulates short-term synaptic plasticity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Opiates are known to function as immunomodulators, in part by effects on T cells. However, the signal transduction pathways mediating the effects of opiates on T cells are largely undefined. To determine whether pathways that regulate free intracellular calcium ([Ca2+]i) and/or cAMP are affected by opiates acting through delta-type opioid receptors (DORs), a cDNA encoding the neuronal DOR was expressed in a stably transfected Jurkat T-cell line. The DOR agonists, deltorphin and [D-Ala2, D-Leu5]-enkephalin (DADLE), elevated [Ca2+]i, measured by flow cytofluorometry using the calcium-sensitive dye, Fluo-3. At concentrations from 10(-11)-10(-7) M, both agonists increased [Ca2+]i from 60 nM to peak concentrations of 400 nM in a dose-dependent manner within 30 sec (ED50 of approximately 5 x 10(-9) M). Naltrindole, a selective DOR antagonist, abolished the increase in [Ca2+]i, and pretreatment with pertussis toxin was also effective. To assess the role of extracellular calcium, cells were pretreated with EGTA, which reduced the initial deltorphin-induced elevation of [Ca2+]i by more than 50% and eliminated the second phase of calcium mobilization. Additionally, the effect of DADLE on forskolin-stimulated cAMP production was determined. DADLE reduced cAMP production by 70% (IC50 of approximately equal to 10(-11) M), and pertussis toxin inhibited the action of DADLE. Thus, the DOR expressed by a transfected Jurkat T-cell line is positively coupled to pathways leading to calcium mobilization and negatively coupled to adenylate cyclase. These studies identify two pertussis toxin-sensitive, G protein-mediated signaling pathways through which DOR agonists regulate the levels of intracellular messengers that modulate T-cell activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel Saccharomyces cerevisiae mutant, unable to grow in the presence of 12.5 mM EGTA, was isolated by replica plating. The phenotype of the mutant is caused by a single amino acid change (Gly149 to Arg) in the essential yeast gene CDC1. The mutant could be suppressed by overexpression of the SMF1 gene, which was isolated as an extragenic high-copy suppressor. The SMF1 gene codes for a highly hydrophobic protein and its deletion renders the yeast cells sensitive to low manganese concentration. In accordance with this observation, the smf1 null mutant exhibits reduced Mn2+ uptake at micromolar concentrations. Using a specific antibody, we demonstrated that Smf1p is located in the yeast plasma membrane. These results suggest that Smf1p is involved in high-affinity Mn2+ uptake. This assumption was also tested by overexpressing the SMF1 gene in the temperature-sensitive mutant of the mitochondrial processing peptidase (MAS1). SMF1 overexpression as well as addition of 1 mM Mn2+ to the growth medium complemented this mutation. This also suggests that in vivo Mas1p is a manganese-dependent peptidase. The yeast Smf1p resembles a protein from Drosophila and mammalian macrophages. The latter was implicated in conferring resistance to mycobacteria. A connection between Mn2+ transport and resistance or sensitivity to mycobacteria is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neurodegenerative processes in Alzheimer disease (AD) are thought to be driven in part by the deposition of amyloid beta (A beta), a 39- to 43-amino acid peptide product resulting from an alternative cleavage of amyloid precursor protein. Recent descriptions of in vitro neurotoxic effects of A beta support this hypothesis and suggest toxicity might be mediated by A beta-induced neuronal calcium disregulation. In addition, it has been reported that "aging" A beta results in increased toxic potency due to peptide aggregation and formation of a beta-sheet secondary structure. In addition, A beta might also promote neuropathology indirectly by activating immune/inflammatory pathways in affected areas of the brain (e.g., cortex and hippocampus). Here we report that A beta can modulate cytokine secretion [interleukins 6 and 8 (IL-6 and IL-8)] from human astrocytoma cells (U-373 MG). Freshly prepared and aged A beta modestly stimulated IL-6 and IL-8 secretion from U-373 MG cells. However, in the presence of interleukin-1 beta (IL-1 beta), aged, but not fresh, A beta markedly potentiated (3- to 8-fold) cytokine release. In contrast, aged A beta did not potentiate substance P (NK-1)- or histamine (H1)-stimulated cytokine production. Further studies showed that IL-1 beta-induced cytokine release was potentiated by A beta-(25-35), while A beta-(1-16) was inactive. Calcium disregulation may be responsible for the effects of A beta on cytokine production, since the calcium ionophore A23187 similarly potentiated IL-1 beta-induced cytokine secretion and EGTA treatment blocked either A beta or A23187 activity. Thus, chronic neurodegeneration in AD-affected brain regions may be mediated in part by the ability of A beta to exacerbate inflammatory pathways in a conformation-dependent manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sucrose synthase (SuSy; EC 2.4.1.13; sucrose + UDP reversible UDPglucose + fructose) has always been studied as a cytoplasmic enzyme in plant cells where it serves to degrade sucrose and provide carbon for respiration and synthesis of cell wall polysaccharides and starch. We report here that at least half of the total SuSy of developing cotton fibers (Gossypium hirsutum) is tightly associated with the plasma membrane. Therefore, this form of SuSy might serve to channel carbon directly from sucrose to cellulose and/or callose synthases in the plasma membrane. By using detached and permeabilized cotton fibers, we show that carbon from sucrose can be converted at high rates to both cellulose and callose. Synthesis of cellulose or callose is favored by addition of EGTA or calcium and cellobiose, respectively. These findings contrast with the traditional observation that when UDPglucose is used as substrate in vitro, callose is the major product synthesized. Immunolocalization studies show that SuSy can be localized at the fiber surface in patterns consistent with the deposition of cellulose or callose. Thus, these results support a model in which SuSy exists in a complex with the beta-glucan synthases and serves to channel carbon from sucrose to glucan.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mechanical signals are important influences on the development and morphology of higher plants. Using tobacco transformed with the Ca(2+)-sensitive luminescent protein aequorin, we recently reported the effects of mechanical signals of touch and wind on the luminescence and thus intracellular calcium of young seedlings. When mesophyll protoplasts are isolated from these transgenic tobacco plants and mechanically stimulated by swirling them in solution, cytoplasmic Ca2+ increases immediately and transiently up to 10 microM, and these transients are unaffected by an excess of EGTA in the medium. The size of the transient effect is related to the strength of swirling. Epidermal strips isolated from transgenic tobacco leaves and containing only viable guard cells and trichomes also respond to the strength of swirling in solution and can increase their cytoplasmic Ca2+ transiently up to 10 microM. Finally, the moss Physcomitrella patens containing recombinant aequorin exhibits transient increases in cytoplasmic Ca2+ up to 5 microM when swirled in solution. This effect is strongly inhibited by ruthenium red. Our data indicate that the effect of mechanical stimulation can be found in a number of different cell types and in a lower plant as well as tobacco and suggest that mechanoperception and the resulting increase in cytoplasmic Ca2+ may be widespread.