4 resultados para ECOLOGICAL STUDIES
em National Center for Biotechnology Information - NCBI
Resumo:
Ecological studies have demonstrated the role of competition in structuring communities; however, the importance of competition as a vehicle for evolution by natural selection and speciation remains unresolved. Study systems of insular faunas have provided several well known cases where ecological character displacement, coevolution of competitors leading to increased morphological separation, is thought to have occurred (e.g., anoline lizards and geospizine finches). Whiptail lizards (genus Cnemidophorus) from the islands of the Sea of Cortez and the surrounding mainland demonstrate a biogeographic pattern of morphological variation suggestive of character displacement. Two species of Cnemidophorus occur on the Baja peninsula, one relatively large (Cnemidophorus tigris) and one smaller (Cnemidophorus hyperythrus). Oceanic islands in the Sea of Cortez contain only single species, five of six having sizes intermediate to both species found on the Baja peninsula. On mainland Mexico C. hyperythrus is absent, whereas C. tigris is the smaller species in whiptail guilds. Here we construct a phylogeny using nucleotide sequences of the cytochrome b gene to infer the evolutionary history of body size change and historical patterns of colonization in the Cnemidophorus system. The phylogenetic analysis indicates that (i) oceanic islands have been founded at least five times from mainland sources by relatives of either C. tigris or C. hyperythrus, (ii) there have been two separate instances of character relaxation on oceanic islands for C. tigris, and (iii) there has been colonization of the oceanic island Cerralvo with retention of ancestral size for Cnemidophorus ceralbensis, a relative of C. hyperythrus. Finally, the phylogenetic analysis reveals potential cryptic species within mainland populations of C. tigris.
Ecological factors rather than temporal factors dominate the evolution of vesicular stomatitis virus
Resumo:
Vesicular stomatitis New Jersey virus (VSV-NJ) is a rhabdovirus that causes economically important disease in cattle and other domestic animals in endemic areas from southeastern United States to northern South America. Its negatively stranded RNA genome is capable of undergoing rapid evolution, which allows phylogenetic analysis and molecular epidemiology studies to be performed. Previous epidemiological studies in Costa Rica showed the existence of at least two distinct ecological zones of high VSV-NJ activity, one located in the highlands (premontane tropical moist forest) and the other in the lowlands (tropical dry forest). We wanted to test the hypothesis that the viruses circulating in these ecological zones were genetically distinct. For this purpose, we sequenced the hypervariable region of the phosphoprotein gene for 50 VSV-NJ isolates from these areas. Phylogenetic analysis showed that viruses from each ecological zone had distinct genotypes. These genotypes were maintained in each area for periods of up to 8 years. This evolutionary pattern of VSV-NJ suggests an adaptation to ecological factors that could exert selective pressure on the virus. As previous data indicated an absence of virus adaptation to factors related to the bovine host (including immunological pressure), it appears that VSV genetic divergence represents positive selection to adapt to specific vectors and/or reservoirs at each ecological zone.
Resumo:
Variability in population growth rate is thought to have negative consequences for organism fitness. Theory for matrix population models predicts that variance in population growth rate should be the sum of the variance in each matrix entry times the squared sensitivity term for that matrix entry. I analyzed the stage-specific demography of 30 field populations from 17 published studies for pattern between the variance of a demographic term and its contribution to population growth. There were no instances in which a matrix entry both was highly variable and had a large effect on population growth rate; instead, correlations between estimates of temporal variance in a term and contribution to population growth (sensitivity or elasticity) were overwhelmingly negative. In addition, survivorship or growth sensitivities or elasticities always exceeded those of fecundity, implying that the former two terms always contributed more to population growth rate. These results suggest that variable life history stages tend to contribute relatively little to population growth rates because natural selection may alter life histories to minimize stages with both high sensitivity and high variation.
Resumo:
Studies on natural populations and harvesting biological resources have led to the view, commonly held, that (i) populations exhibiting chaotic oscillations run a high risk of extinction; and (ii) a decrease in emigration/exploitation may reduce the risk of extinction. Here we describe a simple ecological model with emigration/depletion that shows behavior in contrast to this. This model displays unusual dynamics of extinction and survival, where populations growing beyond a critical rate can persist within a band of high depletion rates, whereas extinction occurs for lower depletion rates. Though prior to extinction at lower depletion rates the population exhibits chaotic dynamics with large amplitudes of variation and very low minima, at higher depletion rates the population persists at chaos but with reduced variation and increased minima. For still higher values, within the band of persistence, the dynamics show period reversal leading to stability. These results illustrate that chaos does not necessarily lead to population extinction. In addition, the persistence of populations at high depletion rates has important implications in the considerations of strategies for the management of biological resources.