3 resultados para EARTH ATMOSPHERE

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of O2-producing cyanobacteria that use water as terminal reductant transformed Earth's atmosphere to one suitable for the evolution of aerobic metabolism and complex life. The innovation of water oxidation freed photosynthesis to invade new environments and visibly changed the face of the Earth. We offer a new hypothesis for how this process evolved, which identifies two critical roles for carbon dioxide in the Archean period. First, we present a thermodynamic analysis showing that bicarbonate (formed by dissolution of CO2) is a more efficient alternative substrate than water for O2 production by oxygenic phototrophs. This analysis clarifies the origin of the long debated “bicarbonate effect” on photosynthetic O2 production. We propose that bicarbonate was the thermodynamically preferred reductant before water in the evolution of oxygenic photosynthesis. Second, we have examined the speciation of manganese(II) and bicarbonate in water, and find that they form Mn-bicarbonate clusters as the major species under conditions that model the chemistry of the Archean sea. These clusters have been found to be highly efficient precursors for the assembly of the tetramanganese-oxide core of the water-oxidizing enzyme during biogenesis. We show that these clusters can be oxidized at electrochemical potentials that are accessible to anoxygenic phototrophs and thus the most likely building blocks for assembly of the first O2 evolving photoreaction center, most likely originating from green nonsulfur bacteria before the evolution of cyanobacteria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the beginning the surface of the Earth was extremely hot, because the Earth as we know it is the product of a collision between two planets, a collision that also created the Moon. Most of the heat within the very young Earth was lost quickly to space while the surface was still quite hot. As it cooled, the Earth's surface passed monotonically through every temperature regime between silicate vapor to liquid water and perhaps even to ice, eventually reaching an equilibrium with sunlight. Inevitably the surface passed through a time when the temperature was around 100°C at which modern thermophile organisms live. How long this warm epoch lasted depends on how long a thick greenhouse atmosphere can be maintained by heat flow from the Earth's interior, either directly as a supplement to insolation, or indirectly through its influence on the nascent carbonate cycle. In both cases, the duration of the warm epoch would have been controlled by processes within the Earth's interior where buffering by surface conditions played little part. A potentially evolutionarily significant warm period of between 105 and 107 years seems likely, which nonetheless was brief compared to the vast expanse of geological time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil dust is a major constituent of airborne particles in the global atmosphere. Dust plumes frequently cover huge areas of the earth; they are one of the most prominent and commonly visible features in satellite imagery. Dust is believed to play a role in many biogeochemical processes, but the importance of dust in these processes is not well understood because of the dearth of information about the global distribution of dust and its physical, chemical, and mineralogical properties. This paper describes some features of the large-scale distribution of dust and identifies some of the geological characteristics of important source areas. The transport of dust from North Africa is presented as an example of possible long-range dust effects, and the impact of African dust on environmental processes in the western North Atlantic and the southeastern United States is assessed. Dust transported over long distances usually has a mass median diameter <10 μm. Small wind-borne soil particles show signs of extensive weathering; consequently, the physical and chemical properties of the particles will greatly depend on the weathering history in the source region and on the subsequent modifications that occur during transit in the atmosphere (typically a period of a week or more). To fully understand the role of dust in the environment and in human health, mineralogists will have to work closely with scientists in other disciplines to characterize the properties of mineral particles as an ensemble and as individual particles especially with regard to surface characteristics.