8 resultados para Dust Flame Acceleration

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective To determine whether patients with asthma who are sensitive to mites benefit from measures designed to reduce their exposure to house dust mite antigen in the home.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cyclooxygenase (COX) product, prostacyclin (PGI2), inhibits platelet activation and vascular smooth-muscle cell migration and proliferation. Biochemically selective inhibition of COX-2 reduces PGI2 biosynthesis substantially in humans. Because deletion of the PGI2 receptor accelerates atherogenesis in the fat-fed low density lipoprotein receptor knockout mouse, we wished to determine whether selective inhibition of COX-2 would accelerate atherogenesis in this model. To address this hypothesis, we used dosing with nimesulide, which inhibited COX-2 ex vivo, depressed urinary 2,3 dinor 6-keto PGF1α by approximately 60% but had no effect on thromboxane formation by platelets, which only express COX-1. By contrast, the isoform nonspecific inhibitor, indomethacin, suppressed platelet function and thromboxane formation ex vivo and in vivo, coincident with effects on PGI2 biosynthesis indistinguishable from nimesulide. Indomethacin reduced the extent of atherosclerosis by 55 ± 4%, whereas nimesulide failed to increase the rate of atherogenesis. Despite their divergent effects on atherogenesis, both drugs depressed two indices of systemic inflammation, soluble intracellular adhesion molecule-1, and monocyte chemoattractant protein-1 to a similar but incomplete degree. Neither drug altered serum lipids and the marked increase in vascular expression of COX-2 during atherogenesis. Accelerated progression of atherosclerosis is unlikely during chronic intake of specific COX-2 inhibitors. Furthermore, evidence that COX-1-derived prostanoids contribute to atherogenesis suggests that controlled evaluation of the effects of nonsteroidal anti-inflammatory drugs and/or aspirin on plaque progression in humans is timely.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of desert dust on cloud properties and precipitation has so far been studied solely by using theoretical models, which predict that rainfall would be enhanced. Here we present observations showing the contrary; the effect of dust on cloud properties is to inhibit precipitation. Using satellite and aircraft observations we show that clouds forming within desert dust contain small droplets and produce little precipitation by drop coalescence. Measurement of the size distribution and the chemical analysis of individual Saharan dust particles collected in such a dust storm suggest a possible mechanism for the diminished rainfall. The detrimental impact of dust on rainfall is smaller than that caused by smoke from biomass burning or anthropogenic air pollution, but the large abundance of desert dust in the atmosphere renders it important. The reduction of precipitation from clouds affected by desert dust can cause drier soil, which in turn raises more dust, thus providing a possible feedback loop to further decrease precipitation. Furthermore, anthropogenic changes of land use exposing the topsoil can initiate such a desertification feedback process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil dust is a major constituent of airborne particles in the global atmosphere. Dust plumes frequently cover huge areas of the earth; they are one of the most prominent and commonly visible features in satellite imagery. Dust is believed to play a role in many biogeochemical processes, but the importance of dust in these processes is not well understood because of the dearth of information about the global distribution of dust and its physical, chemical, and mineralogical properties. This paper describes some features of the large-scale distribution of dust and identifies some of the geological characteristics of important source areas. The transport of dust from North Africa is presented as an example of possible long-range dust effects, and the impact of African dust on environmental processes in the western North Atlantic and the southeastern United States is assessed. Dust transported over long distances usually has a mass median diameter <10 μm. Small wind-borne soil particles show signs of extensive weathering; consequently, the physical and chemical properties of the particles will greatly depend on the weathering history in the source region and on the subsequent modifications that occur during transit in the atmosphere (typically a period of a week or more). To fully understand the role of dust in the environment and in human health, mineralogists will have to work closely with scientists in other disciplines to characterize the properties of mineral particles as an ensemble and as individual particles especially with regard to surface characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aeolian dust (windblown silt and clay) is an important component in arid-land ecosystems because it may contribute to soil formation and furnish essential nutrients. Few geologic surfaces, however, have been characterized with respect to dust-accumulation history and resultant nutrient enrichment. We have developed a combination of methods to identify the presence of aeolian dust in arid regions and to evaluate the roles of this dust in ecosystem processes. Unconsolidated sandy sediment on isolated surfaces in the Canyonlands region of the Colorado Plateau differs greatly in mineralogical and chemical composition from associated bedrock, mainly aeolian sandstone. Detrital magnetite in the surficial deposits produces moderately high values of magnetic susceptibility, but magnetite is absent in nearby bedrock. A component of the surficial deposits must be aeolian to account for the abundance of magnetite, which formed originally in far-distant igneous rocks. Particle-size analysis suggests that the aeolian dust component is typically as much as 20–30%. Dust inputs have enriched the sediments in many elements, including P, Mg, Na, K, and Mo, as well as Ca, at sites where bedrock lacks calcite cement. Soil-surface biologic crusts are effective dust traps that apparently record a change in dust sources over the past several decades. Some of the recently fallen dust may result from human disturbance of land surfaces that are far from the Canyonlands, such as the Mojave Desert. Some land-use practices in the study area have the potential to deplete soil fertility by means of wind-erosion removal of aeolian silt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the relation between cell division and expansion in the regulation of organ growth rate, we used Arabidopsis thaliana primary roots grown vertically at 20°C with an elongation rate that increased steadily during the first 14 d after germination. We measured spatial profiles of longitudinal velocity and cell length and calculated parameters of cell expansion and division, including rates of local cell production (cells mm−1 h−1) and cell division (cells cell−1 h−1). Data were obtained for the root cortex and also for the two types of epidermal cell, trichoblasts and atrichoblasts. Accelerating root elongation was caused by an increasingly longer growth zone, while maximal strain rates remained unchanged. The enlargement of the growth zone and, hence, the accelerating root elongation rate, were accompanied by a nearly proportionally increased cell production. This increased production was caused by increasingly numerous dividing cells, whereas their rates of division remained approximately constant. Additionally, the spatial profile of cell division rate was essentially constant. The meristem was longer than generally assumed, extending well into the region where cells elongated rapidly. In the two epidermal cell types, meristem length and cell division rate were both very similar to that of cortical cells, and differences in cell length between the two epidermal cell types originated at the apex of the meristem. These results highlight the importance of controlling the number of dividing cells, both to generate tissues with different cell lengths and to regulate the rate of organ enlargement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I will discuss several issues related to the acceleration, collimation, and propagation of jets from active galactic nuclei. Hydromagnetic stresses provide the best bet for both accelerating relativistic flows and providing a certain amount of initial collimation. However, there are limits to how much "self-collimation" can be achieved without the help of an external pressurized medium. Moreover, existing models, which postulate highly organized poloidal flux near the base of the flow, are probably unrealistic. Instead, a large fraction of the magnetic energy may reside in highly disorganized "chaotic" fields. Such a field can also accelerate the flow to relativistic speeds, in some cases with greater efficiency than highly organized fields, but at the expense of self-collimation. The observational interpretation of jet physics is still hampered by a dearth of unambiguous diagnostics. Propagating disturbances in flows, such as the oblique shocks that may constitute the kiloparsec-scale "knots" in the M87 jet, may provide a wide range of untapped diagnostics for jet properties.