106 resultados para Duplex circulator

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peptide nucleic acids (PNA) are mimics with normal bases connected to a pseudopeptide chain that obey Watson–Crick rules to form stable duplexes with itself and natural nucleic acids. This has focused attention on PNA as therapeutic or diagnostic reagents. Duplexes formed with PNA mirror some but not all properties of DNA. One fascinating aspect of PNA biochemistry is their reaction with enzymes. Here we show an enzyme reaction that operates effectively on a PNA/DNA hybrid duplex. A DNA oligonucleotide containing a cis, syn-thymine [2+2] dimer forms a stable duplex with PNA. The hybrid duplex is recognized by photolyase, and irradiation of the complex leads to the repair of the thymine dimer. This finding provides insight into the enzyme mechanism and provides a means for the selective repair of thymine photodimers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The end of a telomeric DNA sequence isolated from a polytene chromosome of a hypotrichous ciliate folds back and hybridizes with downstream telomeric sequence to form a t loop that is stable in the absence of protein and DNA cross-linking. The single-stranded, telomeric DNA sequence at the end of a macronuclear molecule does not form a t loop but, instead, is complexed with a heterodimeric, telomere-binding protein. Thus, two mechanisms for capping the ends of DNA molecules are used in the same cell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The terbenzimidazoles are a class of synthetic ligands that poison the human topoisomerase I (TOP1) enzyme and promote cancer cell death. It has been proposed that drugs of this class act as TOP1 poisons by binding to the minor groove of the DNA substrate of TOP1 and altering its structure in a manner that results in enzyme-mediated DNA cleavage. To test this hypothesis, we characterize and compare the binding properties of a 5-phenylterbenzimidazole derivative (5PTB) to the d(GA4T4C)2 and d(GT4A4C)2 duplexes. The d(GA4T4C)2 duplex contains an uninterrupted 8-bp A⋅T domain, which, on the basis of x-ray crystallographic data, should induce a highly hydrated “A-tract” conformation. This duplex also exhibits anomalously slow migration in a polyacrylamide gel, a feature characteristic of a noncanonical global conformational state frequently described as “bent.” By contrast, the d(GT4A4C)2 duplex contains two 4-bp A⋅T tracts separated by a TpA dinucleotide step, which should induce a less hydrated “B-like” conformation. This duplex also migrates normally in a polyacrylamide gel, a feature further characteristic of a global, canonical B-form duplex. Our data reveal that, at 20°C, 5PTB exhibits an ≈2.3 kcal/mol greater affinity for the d(GA4T4C)2 duplex than for the d(GT4A4C)2 duplex. Significantly, we find this sequence/conformational binding specificity of 5PTB to be entropic in origin, an observation consistent with a greater degree of drug binding-induced dehydration of the more solvated d(GA4T4C)2 duplex. By contrast with the differential duplex affinity exhibited by 5PTB, netropsin and 4′,6-diamidino-2-phenylindole (DAPI), two AT-specific minor groove binding ligands that are inactive as human TOP1 poisons, bind to both duplexes with similar affinities. The electrophoretic behaviors of the ligand-free and ligand-bound duplexes are consistent with 5PTB-induced bending and/or unwinding of both duplexes, which, for the d(GA4T4C)2 duplex, is synergistic with the endogenous sequence-directed electrophoretic properties of the ligand-free duplex state. By contrast, the binding to either duplex of netropsin or DAPI induces little or no change in the electrophoretic mobilities of the duplexes. Our results demonstrate that the TOP1 poison 5PTB binds differentially to and alters the structures of the two duplexes, in contrast to netropsin and DAPI, which bind with similar affinities to the two duplexes and do not significantly alter their structures. These results are consistent with a mechanism for TOP1 poisoning in which drugs such as 5PTB differentially target conformationally distinct DNA sites and induce structural changes that promote enzyme-mediated DNA cleavage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hepatitis C virus (HCV) helicase, non-structural protein 3 (NS3), is proposed to aid in HCV genome replication and is considered a target for inhibition of HCV. In order to investigate the substrate requirements for nucleic acid unwinding by NS3, substrates were prepared by annealing a 30mer oligonucleotide to a 15mer. The resulting 15 bp duplex contained a single-stranded DNA overhang of 15 nt referred to as the bound strand. Other substrates were prepared in which the 15mer DNA was replaced by a strand of peptide nucleic acid (PNA). The PNA–DNA substrate was unwound by NS3, but the observed rate of strand separation was at least 25-fold slower than for the equivalent DNA–DNA substrate. Binding of NS3 to the PNA–DNA substrate was similar to the DNA–DNA substrate, due to the fact that NS3 initially binds to the single-stranded overhang, which was identical in each substrate. A PNA–RNA substrate was not unwound by NS3 under similar conditions. In contrast, morpholino–DNA and phosphorothioate–DNA substrates were utilized as efficiently by NS3 as DNA–DNA substrates. These results indicate that the PNA–DNA and PNA–RNA heteroduplexes adopt structures that are unfavorable for unwinding by NS3, suggesting that the unwinding activity of NS3 is sensitive to the structure of the duplex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A dumbbell double-stranded DNA decamer tethered with a hexaethylene glycol linker moiety (DDSDPEG), with a nick in the centre of one strand, has been synthesised. The standard NMR methods, E.COSY, TOCSY, NOESY and HMQC, were used to measure 1H, 31P and T1 spectral parameters. Molecular modelling using rMD-simulated annealing was used to compute the structure. Scalar couplings and dipolar contacts show that the molecule adopts a right-handed B-DNA helix in 38 mM phosphate buffer at pH 7. Its high melting temperature confirms the good base stacking and stability of the duplex. This is partly attributed to the presence of the PEG6 linker at both ends of the duplex that restricts the dynamics of the stem pentamers and thus stabilises the oligonucleotide. The inspection of the global parameters shows that the linker does not distort the B-DNA geometry. The computed structure suggests that the presence of the nick is not disturbing the overall tertiary structure, base pair geometry or duplex base pairing to a substantial extent. The nick has, however, a noticeable impact on the local geometry at the nick site, indicated clearly by NMR analysis and reflected in the conformational parameters of the computed structure. The 1H spectra also show much sharper resonances in the presence of K+ indicating that conformational heterogeneity of DDSDPEG is reduced in the presence of potassium as compared to sodium or caesium ions. At the same time the 1H resonances have longer T1 times. This parameter is suggested as a sensitive gauge of stabilisation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Escherichia coli protein DbpA is unique in its subclass of DEAD box RNA helicases, because it possesses ATPase-specific activity toward the peptidyl transferase center in 23S rRNA. Although its remarkable ATPase activity had been well defined toward various substrates, its RNA helicase activity remained to be characterized. Herein, we show by using biochemical assays and atomic force microscopy that DbpA exhibits ATP-stimulated unwinding activity of RNA duplex regardless of its primary sequence. This work presents an attempt to investigate the action of DEAD box proteins by a single-molecule visualization methodology. Our atomic force microscopy images enabled us to observe directly the unwinding reaction of a DEAD box helicase on long stretches of double-stranded RNA. Specifically, we could differentiate between the binding of DbpA to RNA in the absence of ATP and the formation of a Y-shaped intermediate after its progression through double-stranded RNA in the presence of ATP. Recent studies have questioned the designation of DbpA, in particular, and DEAD box proteins in general as RNA helicases. However, accumulated evidence and the results reported herein suggest that these proteins are indeed helicases that resemble in many aspects the DNA helicases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The carcinogenic heterocyclic amine (HA) 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is formed during the cooking of various meats. To enable structure/activity studies aimed at understanding how DNA damaged by a member of the HA class of compounds can ultimately lead to cancer, we have determined the first solution structure of an 11-mer duplex containing the C8-dG adduct formed by reaction with N-acetoxy-PhIP. A slow conformational exchange is observed in which the PhIP ligand either intercalates into the DNA helix by denaturing and displacing the modified base pair (main form) or is located outside the helix in a minimally perturbed B-DNA duplex (minor form). In the main base-displaced intercalation structure, the minor groove is widened, and the major groove is compressed at the lesion site because of the location of the bulky PhIP-N-methyl and phenyl ring in the minor groove; this distortion causes significant bending of the helix. The PhIP phenyl ring interacts with the phosphodiester-sugar ring backbone of the complementary strand and its fast rotation with respect to the intercalated imidazopyridine ring causes substantial distortions at this site, such as unwinding and bulging-out of the strand. The glycosidic torsion angle of the [PhIP]dG residue is syn, and the displaced guanine base is directed toward the 3′ end of the modified strand. This study contributes, to our knowledge, the first structural information on the biologically relevant HA class to a growing body of knowledge about how conformational similarities and differences for a variety of types of lesions can influence protein interactions and ultimately biological outcome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

cis-Diamminedichloroplatinum(II) (cisplatin) is a widely used anticancer drug that binds to and crosslinks DNA. The major DNA adduct of the drug results from coordination of two adjacent guanine bases to platinum to form the intrastrand crosslink cis-[Pt(NH3)2[d(GpG)-N7(1), -N7(2)]] (cis-Pt-GG). In the present study, spectroscopic and calorimetric techniques were employed to characterize the influence of this crosslink on the conformation, thermal stability, and energetics of a site-specifically platinated 20-mer DNA duplex. CD spectroscopic and thermal denaturation data revealed that the crosslink alters the structure of the host duplex, consistent with a shift from a B-like to an A-like conformation; lowers its thermal stability by approximately 9 degrees C; and reduces its thermodynamic stability by 6.3 kcal/mol at 25 degrees C, most of which is enthalpic in origin; but it does not alter the two-state melting behavior exhibited by the parent, unmodified duplex, despite the significant crosslink-induced changes noted above. The energetic consequences of the cis-Pt-GG crosslink are discussed in relation to the structural perturbations it induces in DNA and to how these crosslink-induced perturbations might modulate protein binding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Replication of the kinetoplast DNA (kDNA) minicircle of trypanosomatids initiates at a conserved 12-nt sequence, 5'-GGGGTTGGTGTA-3', termed the universal minicircle sequence (UMS). A sequence-specific single-stranded DNA-binding protein from Crithidia fasciculata binds the heavy strand of the 12-mer UMS. Whereas this UMS-binding protein (UMSBP) does not bind a duplex UMS dodecamer, it binds the double-stranded kDNA minicircle as well as a duplex minicircle fragment containing the origin-associated UMS. Binding of the minicircle origin region by the single-stranded DNA binding protein suggested the local unwinding of the DNA double helix at this site. Modification of thymine residues at this site by KMnO4 revealed that the UMS resides within an unwound or otherwise sharply distorted DNA at the minicircle origin region. Computer analysis predicts the sequence-directed curving of the minicircle origin region. Electrophoresis of a minicircle fragment containing the origin region in polyacrylamide gels revealed a significantly lower electrophoretic mobility than expected from its length. The fragment anomalous electrophoretic mobility is displayed only in its native conformation and is dependent on temperature and gel porosity, indicating the local curving of the DNA double helix. We suggest that binding of UMSBP at the minicircle origin of replication is possible through local unwinding of the DNA double helix at the UMS site. It is hypothesized here that this local melting is initiated through the untwisting of unstacked dinucleotide sequences at the bent origin site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To elucidate the mechanism of recognition of double-stranded DNA (dsDNA) by homopyrimidine polyamide ("peptide") nucleic acid (PNA) leading to the strand-displacement, the kinetics of the sequence-specific PNA/DNA binding have been studied. The binding was monitored with time by the gel retardation and nuclease S1 cleavage assays. The experimental kinetic curves obey pseudo-first-order kinetics and the dependence of the pseudo-first-order rate constant, kps, on PNA concentration, P, obeys a power law kps approximately P gamma with 2 < gamma < 3. The kps values for binding of decamer PNA to dsDNA target sites with one mismatch are hundreds of times slower than for the correct site. A detailed kinetic scheme for PNA/DNA binding is proposed that includes two major steps of the reaction of strand invasion: (i) a transient partial opening of the PNA binding site on dsDNA and incorporation of one PNA molecule with the formation of an intermediate PNA/DNA duplex and (ii) formation of a very stable PNA2/DNA triplex. A simple theoretical treatment of the proposed kinetic scheme is performed. The interpretation of our experimental data in the framework of the proposed kinetic scheme leads to the following conclusions. The sequence specificity of the recognition is essentially provided at the "search" step of the process, which consists in the highly reversible transient formation of duplex between one PNA molecule and the complementary strand of duplex DNA while the other DNA strand is displaced. This search step is followed by virtually irreversible "locking" step via PNA2/DNA triplex formation. The proposed mechanism explains how the binding of homopyrimidine PNA to dsDNA meets two apparently mutually contradictory features: high sequence specificity of binding and remarkable stability of both correct and mismatched PNA/DNA complexes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Splicing of nuclear precursors of mRNA (pre-mRNA) involves dynamic interactions between the RNA constituents of the spliceosome. The rearrangement of RNA–RNA interactions, such as the unwinding of the U4/U6 duplex, is believed to be driven by ATP-dependent RNA helicases. We recently have shown that spliceosomal U5 small nuclear ribonucleoproteins (snRNPs) from HeLa cells contain two proteins, U5–200kD and U5–100kD, which share homology with the DEAD/DEXH-box families of RNA helicases. Here we demonstrate that purified U5 snRNPs exhibit ATP-dependent unwinding of U4/U6 RNA duplices in vitro. To identify the protein responsible for this activity, U5 snRNPs were depleted of a subset of proteins under high salt concentrations and assayed for RNA unwinding. The activity was retained in U5 snRNPs that contain the U5–200kD protein but lack U5–100kD, suggesting that the U5–200kD protein could mediate U4/U6 duplex unwinding. Finally, U5–200kD was purified to homogeneity by glycerol gradient centrifugation of U5 snRNP proteins in the presence of sodium thiocyanate, followed by ion exchange chromatography. The RNA unwinding activity was found to reside exclusively with the U5–200kD DEXH-box protein. Our data raise the interesting possibility that this RNA helicase catalyzes unwinding of the U4/U6 RNA duplex in the spliceosome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Membrane bilayer fusion has been shown to be mediated by v- and t-SNAREs initially present in separate populations of liposomes and to occur with high efficiency at a physiologically meaningful rate. Lipid mixing was demonstrated to involve both the inner and the outer leaflets of the membrane bilayer. Here, we use a fusion assay that relies on duplex formation of oligonucleotides introduced in separate liposome populations and report that SNARE proteins suffice to mediate complete membrane fusion accompanied by mixing of luminal content. We also find that SNARE-mediated membrane fusion does not compromise the integrity of liposomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spectrum of mutations induced by the naturally occurring DNA adduct pyrimido[1,2-α]purin-10(3H)-one (M1G) was determined by site-specific approaches using M13 vectors replicated in Escherichia coli. M1G was placed at position 6256 in the (−)-strand of M13MB102 by ligating the oligodeoxynucleotide 5′-GGT(M1G)TCCG-3′ into a gapped-duplex derivative of the vector. Unmodified and M1G-modified genomes containing either a cytosine or thymine at position 6256 of the (+)-strand were transformed into repair-proficient and repair-deficient E. coli strains, and base pair substitutions were quantitated by hybridization analysis. Modified genomes containing a cytosine opposite M1G resulted in roughly equal numbers of M1G→A and M1G→T mutations with few M1G→C mutations. The total mutation frequency was ≈1%, which represents a 500-fold increase in mutations compared with unmodified M13MB102. Transformation of modified genomes containing a thymine opposite M1G allowed an estimate to be made of the ability of M1G to block replication. The (−)-strand was replicated >80% of the time in the unadducted genome but only 20% of the time when M1G was present. Correction of the mutation frequency for the strand bias of replication indicated that the actual frequency of mutations induced by M1G was 18%. Experiments using E. coli with different genetic backgrounds indicated that the SOS response enhances the mutagenicity of M1G and that M1G is a substrate for repair by the nucleotide excision repair complex. These studies indicate that M1G, which is present endogenously in DNA of healthy human beings, is a strong block to replication and an efficient premutagenic lesion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RecA is a 38-kDa protein from Escherichia coli that polymerizes on single-stranded DNA, forming a nucleoprotein filament that pairs with homologous duplex DNA and carries out strand exchange in vitro. To observe the effects of mismatches on the kinetics of the RecA-catalyzed recombination reaction, we used assays based upon fluorescence energy transfer that can differentiate between the pairing and strand displacement phases. Oligonucleotide sequences that produced 2–14% mismatches in the heteroduplex product of strand exchange were tested, as well as completely homologous and heterologous sequences. The equilibrium constant for pairing decreased as the number of mismatches increased, which appeared to result from both a decrease in the rate of formation and an increase in the rate of dissociation of the intermediates. In addition, the rate of strand displacement decreased with increasing numbers of mismatches, roughly in proportion to the number of mismatches. The equilibrium constant for pairing and the rate constant for strand displacement both decreased 6-fold as the heterology increased to 14%. These results suggest that discrimination of homology from heterology occurs during both pairing and strand exchange.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The crystal structure of the RNA dodecamer 5′-GGCC(GAAA)GGCC-3′ has been determined from x-ray diffraction data to 2.3-Å resolution. In the crystal, these oligomers form double helices around twofold symmetry axes. Four consecutive non-Watson–Crick base pairs make up an internal loop in the middle of the duplex, including sheared G·A pairs and novel asymmetric A·A pairs. This internal loop sequence produces a significant curvature and narrowing of the double helix. The helix is curved by 34° from end to end and the diameter is narrowed by 24% in the internal loop. A Mn2+ ion is bound directly to the N7 of the first guanine in the Watson–Crick region following the internal loop and the phosphate of the preceding residue. This Mn2+ location corresponds to a metal binding site observed in the hammerhead catalytic RNA.