10 resultados para Ducharme, Carrie
em National Center for Biotechnology Information - NCBI
Resumo:
The signal transduction and activation of RNA (STAR) family of RNA-binding proteins, whose members are evolutionarily conserved from yeast to humans, are important for a number of developmental decisions. For example, in the mouse, quaking proteins (QKI-5, QKI-6, and QKI-7) are essential for embryogenesis and myelination , whereas a closely related protein in Caenorhabditis elegans, germline defective-1 (GLD-1), is necessary for germ-line development. Recently, GLD-1 was found to be a translational repressor that acts through regulatory elements, called TGEs (for tra-2 and GLI elements), present in the 3′ untranslated region of the sex-determining gene tra-2. This gene promotes female development, and repression of tra-2 translation by TGEs is necessary for the male cell fates. The finding that GLD-1 inhibits tra-2 translation raises the possibility that other STAR family members act by a similar mechanism to control gene activity. Here we demonstrate, both in vitro and in vivo, that QKI-6 functions in the same manner as GLD-1 and can specifically bind to TGEs to repress translation of reporter constructs containing TGEs. In addition, expression of QKI-6 in C. elegans wild-type hermaphrodites or in hermaphrodites that are partially masculinized by a loss-of-function mutation in the sex-determining gene tra-3 results in masculinization of somatic tissues, consistent with QKI-6 repressing the activity of tra-2. These results strongly suggest that QKI-6 may control gene activity by operating through TGEs to regulate translation. In addition, our data support the hypothesis that other STAR family members may also be TGE-dependent translational regulators.
Resumo:
Triacylglycerols are quantitatively the most important storage form of energy for eukaryotic cells. Acyl CoA:diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) catalyzes the terminal and only committed step in triacylglycerol synthesis, by using diacylglycerol and fatty acyl CoA as substrates. DGAT plays a fundamental role in the metabolism of cellular diacylglycerol and is important in higher eukaryotes for physiologic processes involving triacylglycerol metabolism such as intestinal fat absorption, lipoprotein assembly, adipose tissue formation, and lactation. DGAT is an integral membrane protein that has never been purified to homogeneity, nor has its gene been cloned. We identified an expressed sequence tag clone that shared regions of similarity with acyl CoA:cholesterol acyltransferase, an enzyme that also uses fatty acyl CoA as a substrate. Expression of a mouse cDNA for this expressed sequence tag in insect cells resulted in high levels of DGAT activity in cell membranes. No other acyltransferase activity was detected when a variety of substrates, including cholesterol, were used as acyl acceptors. The gene was expressed in all tissues examined; during differentiation of NIH 3T3-L1 cells into adipocytes, its expression increased markedly in parallel with increases in DGAT activity. The identification of this cDNA encoding a DGAT will greatly facilitate studies of cellular glycerolipid metabolism and its regulation.
Resumo:
Silencing is a universal form of transcriptional regulation in which regions of the genome are reversibly inactivated by changes in chromatin structure. Sir2 (Silent Information Regulator) protein is unique among the silencing factors in Saccharomyces cerevisiae because it silences the rDNA as well as the silent mating-type loci and telomeres. Discovery of a gene family of Homologues of Sir Two (HSTs) in organisms from bacteria to humans suggests that SIR2’s silencing mechanism might be conserved. The Sir2 and Hst proteins share a core domain, which includes two diagnostic sequence motifs of unknown function as well as four cysteines of a putative zinc finger. We demonstrate by mutational analyses that the conserved core and each of its motifs are essential for Sir2p silencing. Chimeras between Sir2p and a human Sir2 homologue (hSir2Ap) indicate that this human protein’s core can substitute for that of Sir2p, implicating the core as a silencing domain. Immunofluorescence studies reveal partially disrupted localization, accounting for the yeast–human chimeras’ ability to function at only a subset of Sir2p’s target loci. Together, these results support a model for the involvement of distinct Sir2p-containing complexes in HM/telomeric and rDNA silencing and that HST family members, including the widely expressed hSir2A, may perform evolutionarily conserved functions.
Resumo:
Although silencing is a significant form of transcriptional regulation, the functional and mechanistic limits of its conservation have not yet been established. We have identified the Schizosaccharomyces pombe hst4+ gene as a member of the SIR2/HST silencing gene family that is defined in organisms ranging from bacteria to humans. hst4Δ mutants grow more slowly than wild-type cells and have abnormal morphology and fragmented DNA. Mutant strains show decreased silencing of reporter genes at both telomeres and centromeres. hst4+ appears to be important for centromere function as well because mutants have elevated chromosome-loss rates and are sensitive to a microtubule-destabilizing drug. Consistent with a role in chromatin structure, Hst4p localizes to the nucleus and appears concentrated in the nucleolus. hst4Δ mutant phenotypes, including growth and silencing phenotypes, are similar to those of the Saccharomyces cerevisiae HSTs, and at a molecular level, hst4+ is most similar to HST4. Furthermore, hst4+ is a functional homologue of S. cerevisiae HST3 and HST4 in that overexpression of hst4+ rescues the temperature-sensitivity and telomeric silencing defects of an hst3Δ hst4Δ double mutant. These results together demonstrate that a SIR-like silencing mechanism is conserved in the distantly related yeasts and is likely to be found in other organisms from prokaryotes to mammals.
Resumo:
We demonstrated that peripheral T cell tolerance toward murine melanoma self-antigens gp100 and TRP-2 can be broken by an autologous oral DNA vaccine containing the murine ubiquitin gene fused to minigenes encoding peptide epitopes gp10025–33 and TRP-2181–188. These epitopes contain dominant anchor residues for MHC class I antigen alleles H-2Db and H-2Kb, respectively. The DNA vaccine was delivered by oral gavage by using an attenuated strain of Salmonella typhimurium as carrier. Tumor-protective immunity was mediated by MHC class I antigen-restricted CD8+ T cells that secreted TH1 cytokine IFN-γ and induced tumor rejection and growth suppression after a lethal challenge with B16G3.26 murine melanoma cells. Importantly, the protective immunity induced by this autologous DNA vaccine against murine melanoma cells was at least equal to that achieved through xenoimmunization with the human gp10025–33 peptide, which differs in its three NH2-terminal amino acid residues from its murine counterpart and was previously reported to be clearly superior to an autologous vaccine in inducing protective immunity. The presence of ubiquitin upstream of the minigene proved to be essential for achieving this tumor-protective immunity, suggesting that effective antigen processing and presentation may make it possible to break peripheral T cell tolerance to a self-antigen. This vaccine design might prove useful for future rational designs of other recombinant DNA vaccines targeting tissue differentiation antigens expressed by tumors.
Resumo:
Objectives To estimate the therapeutic and adverse effects of addition of inhaled anticholinergics to β2 agonists in acute asthma in children and adolescents.
Resumo:
Nox1, a homologue of gp91phox, the catalytic moiety of the superoxide (O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{-}}}\end{equation*}\end{document})-generating NADPH oxidase of phagocytes, causes increased O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{-}}}\end{equation*}\end{document} generation, increased mitotic rate, cell transformation, and tumorigenicity when expressed in NIH 3T3 fibroblasts. This study explores the role of reactive oxygen species (ROS) in regulating cell growth and transformation by Nox1. H2O2 concentration increased ≈10-fold in Nox1-expressing cells, compared with <2-fold increase in O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{-}}}\end{equation*}\end{document}. When human catalase was expressed in Nox1-expressing cells, H2O2 concentration decreased, and the cells reverted to a normal appearance, the growth rate normalized, and cells no longer produced tumors in athymic mice. A large number of genes, including many related to cell cycle, growth, and cancer (but unrelated to oxidative stress), were expressed in Nox1-expressing cells, and more than 60% of these returned to normal levels on coexpression of catalase. Thus, H2O2 in low concentrations functions as an intracellular signal that triggers a genetic program related to cell growth.
Resumo:
Atherosclerosis is a complex disease resulting from the interaction of multiple genes. We have used the Ldlr knockout mouse model in an interspecific genetic cross to map atherosclerosis susceptibility loci. A total of 174 (MOLF/Ei × B6.129S7-Ldlrtm1Her) × C57BL/6J-Ldlrtm1Her backcross mice, homozygous for the Ldlr null allele, were fed a Western-type diet for 3 months and then killed for quantification of aortic lesions. A genome scan was carried out by using DNA pools and microsatellite markers spaced at ≈18-centimorgan intervals. Quantitative trait locus analysis of individual backcross mice confirmed linkages to chromosomes 4 (Athsq1, logarithm of odds = 6.2) and 6 (Athsq2, logarithm of odds = 6.7). Athsq1 affected lesions in females only whereas Athsq2 affected both sexes. Among females, the loci accounted for ≈50% of the total variance of lesion area. The susceptible allele at Athsq1 was derived from the MOLF/Ei genome whereas the susceptible allele at Athsq2 was derived from C57BL/6J. Inheritance of susceptible alleles at both loci conferred a 2-fold difference in lesion area, suggesting an additive effect of Athsq1 and Athsq2. No associations were observed between the quantitative trait loci and levels of plasma total cholesterol, high density lipoprotein cholesterol, non-high density lipoprotein cholesterol, insulin, or body weight. We provide strong evidence for complex inheritance of atherosclerosis in mice with elevated plasma low density lipoprotein cholesterol and show a major influence of nonlipoprotein-related factors on disease susceptibility. Athsq1 and Athsq2 represent candidate susceptibility loci for human atherosclerosis, most likely residing on chromosomes 1p36–32 and 12p13–12, respectively.