3 resultados para Dual flow line

em National Center for Biotechnology Information - NCBI


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Opiates are known to function as immunomodulators, in part by effects on T cells. However, the signal transduction pathways mediating the effects of opiates on T cells are largely undefined. To determine whether pathways that regulate free intracellular calcium ([Ca2+]i) and/or cAMP are affected by opiates acting through delta-type opioid receptors (DORs), a cDNA encoding the neuronal DOR was expressed in a stably transfected Jurkat T-cell line. The DOR agonists, deltorphin and [D-Ala2, D-Leu5]-enkephalin (DADLE), elevated [Ca2+]i, measured by flow cytofluorometry using the calcium-sensitive dye, Fluo-3. At concentrations from 10(-11)-10(-7) M, both agonists increased [Ca2+]i from 60 nM to peak concentrations of 400 nM in a dose-dependent manner within 30 sec (ED50 of approximately 5 x 10(-9) M). Naltrindole, a selective DOR antagonist, abolished the increase in [Ca2+]i, and pretreatment with pertussis toxin was also effective. To assess the role of extracellular calcium, cells were pretreated with EGTA, which reduced the initial deltorphin-induced elevation of [Ca2+]i by more than 50% and eliminated the second phase of calcium mobilization. Additionally, the effect of DADLE on forskolin-stimulated cAMP production was determined. DADLE reduced cAMP production by 70% (IC50 of approximately equal to 10(-11) M), and pertussis toxin inhibited the action of DADLE. Thus, the DOR expressed by a transfected Jurkat T-cell line is positively coupled to pathways leading to calcium mobilization and negatively coupled to adenylate cyclase. These studies identify two pertussis toxin-sensitive, G protein-mediated signaling pathways through which DOR agonists regulate the levels of intracellular messengers that modulate T-cell activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A causal role has been inferred for ERBB2 overexpression in the etiology of breast cancer and other epithelial malignancies. The development of therapeutics that inhibit this tyrosine kinase cell surface receptor remains a high priority. This report describes the specific downregulation of ERBB2 protein and mRNA in the breast cancer cell line SK-BR-3 by using antisense DNA phosphorothioates. An approach was developed to examine antisense effects which allows simultaneous measurements of antisense dose and gene specific regulation on a per cell basis. A fluorescein isothiocyanate end-labeled tracer oligonucleotide was codelivered with antisense DNA followed by immunofluorescent staining for ERBB2 protein expression. Two-color flow cytometry measured the amount of both intracellular oligonucleotide and ERBB2 protein. In addition, populations of cells that received various doses of nucleic acids were physically separated and studied. In any given transfection, a 100-fold variation in oligonucleotide dosage was found. ERBB2 protein expression was reduced greater than 50%, but only in cells within a relatively narrow uptake range. Steady-state ERBB2 mRNA levels were selectively diminished, indicating a specific antisense effect. Cells receiving the optimal antisense dose were sorted and analyzed for cell cycle changes. After 2 days of ERBB2 suppression, breast cancer cells showed an accumulation in the G1 phase of the cell cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dual-specific protein-tyrosine phosphatases have the common active-site sequence motif HCXXGXXRS(T). The role of the conserved hydroxyl was investigated by changing serine-131 to an alanine (S131A) in the dual-specific protein-tyrosine phosphatase VHR. The pH profile of the kcat/Km value for the S131A mutant is indistinguishable from that of the native enzyme. In contrast, the kcat value for S131A mutant is 100-fold lower than that for the native enzyme, and the shape of the pH profile was perturbed from bell-shaped in the native enzyme to a pH-independent curve over the pH range 4.5-9.0. This evidence, along with results from a previous study, suggests that the S131A mutation alters the rate-limiting step in the catalytic mechanism. Formation of a phosphoenzyme intermediate appears to be rate-limiting with the native enzyme, whereas in the S131A mutant breakdown of the intermediate is rate-limiting. This was confirmed by the appearance of a burst of p-nitrophenol formation when p-nitrophenyl phosphate rapidly reacted with the S131A enzyme in a stopped-flow spectrophotometer. Loss of this hydroxyl group at the active site dramatically diminished the ability of the enzyme to hydrolyze the thiol-phosphate intermediate without exerting any significant change in the steps leading to and including the formation of the intermediate. Consistent with rate-limiting intermediate formation in the native enzyme, the rate of burst in the S131A mutant was 1.5 s-1, which agrees well with the kcat value of 5 s-1 observed for native enzyme. The amplitude of the burst was stoichiometric with final enzyme concentration, and the slow linear rate (0.06 s-1) of p-nitrophenol formation after the burst was in agreement with the steady-state determined value of kcat (0.055 s-1).