4 resultados para Drug Utilization Review
em National Center for Biotechnology Information - NCBI
Resumo:
Human P-glycoprotein (Pgp) confers multidrug resistance to cancer cells by ATP-dependent extrusion of a great many structurally dissimilar hydrophobic compounds. The manner in which Pgp recognizes these different substrates is unknown. The protein shows internal homology between its N- and C-terminal halves, each comprised of six putative transmembrane helices and a consensus ATP binding/utilization site. Photoactive derivatives of certain Pgp substrates specifically label two regions, one on each half of the protein. In this study, using [125I]iodoarylazidoprazosin ([125I]IAAP), a photoactive analog of prazosin, we have demonstrated the presence of two nonidentical drug-interaction sites within Pgp. Taking advantage of a highly susceptible trypsin cleavage site in the linker region of Pgp, we characterized the [125I]IAAP binding to the N- and C-terminal halves. cis(Z)-Flupentixol, a modulator of Pgp function, preferentially increased the affinity of [125I]IAAP for the C-terminal half of the protein (C-site) by reducing the Kd from 20 to 6 nM without changing the labeling or affinity (Kd = 42–46 nM) of the N-terminal half (N-site). Also, the concentration of vinblastine (Pgp substrate) and cyclosporin A (Pgp modulator) required for 50% inhibition of [125I]IAAP binding to the C-site was increased 5- to 6-fold by cis(Z)-flupentixol without any effect on the N-site. In addition, [125I]IAAP binding to the N-site was less susceptible than to C-site to inhibition by vanadate which blocks ATP hydrolysis and drug transport. These data demonstrate the presence of at least two nonidentical substrate interaction sites in Pgp.
Resumo:
Objective: To evaluate the effectiveness of diets, drug treatment, and behavioural interventions on infantile colic in trials with crying or the presence of colic as the primary outcome measure.
Resumo:
Strains of Mycobacterium smegmatis, a mycobacterium which shares genetic sequences, grows more rapidly, and is nonpathogenic in man as compared with Mycobacterium tuberculosis, were utilized for the initial development of new antimycobacterial therapy. Drug-resistant strains of M. smegmatis which are known to arise in a manner identical to the emergence of drug-resistant strains of M. tuberculosis were isolated and utilized as models for the antimycobacterial activities of modified and unmodified oligodeoxynucleotide phosphorothioates in broth cultures. Under normal conditions, oligodeoxynucleotide phosphorothioates do not enter mycobacteria, and several strategies were successfully utilized to afford entry of oligonucleotides into the mycobacterial cells. One involved the presence of very low levels of ethambutol, which enables the entry of oligonucleotides into mycobacteria because of its induced alterations in the cell wall, and another involved the utilization of oligonucleotides covalently attached to a D-cycloserine molecule, whereby entry into the mycobacterial cell is achieved by a receptor-mediated process. Another low molecular weight, covalently attached ligand that enabled the entry and subsequent antimycobacterial activities of oligodeoxynucleotide phosphorothioates in the absence of a cell wall modifying reagent was biotin. Significant sequence-specific growth inhibition of wild-type, as well as of drug-resistant, M. smegmatis was obtained by modified oligonucleotides complementary in sequence to a specific region of the mycobacterium aspartokinase (ask) gene when utilized in combinations with ethambutol (as compared to ethambutol alone) or as D-cycloserine or biotin covalent adducts without the presence of any other cytotoxic or cytostatic agent.