4 resultados para Door latches.
em National Center for Biotechnology Information - NCBI
Resumo:
Thioredoxin, a ubiquitous 12-kDa regulatory disulfide protein, was found to reduce disulfide bonds of allergens (convert S—S to 2 SH) and thereby mitigate the allergenicity of commercial wheat preparations. Allergenic strength was determined by skin tests with a canine model for food allergy. Statistically significant mitigation was observed with 15 of 16 wheat-sensitive animals. The allergenicity of the protein fractions extracted from wheat flour with the indicated solvent was also assessed: the gliadins (ethanol) were the strongest allergens, followed by glutenins (acetic acid), albumins (water), and globulins (salt water). Of the gliadins, the α and β fractions were most potent, followed by the γ and ω types. Thioredoxin mitigated the allergenicity associated with the major protein fractions—i.e, the gliadins (including the α, β, and γ types) and the glutenins—but gave less consistent results with the minor fractions, the albumins and globulins. In all cases, mitigation was specific to thioredoxin that had been reduced either enzymically by NADPH and NADP–thioredoxin reductase or chemically by dithiothreitol; reduced glutathione was without significant effect. As in previous studies, thioredoxin was particularly effective in the reduction of intramolecular (intrachain) disulfide bonds. The present results demonstrate that the reduction of these disulfide bonds is accompanied by a statistically significant decrease in allergenicity of the active proteins. This decrease occurs alongside the changes identified previously—i.e., increased susceptibility to proteolysis and heat, and altered biochemical activity. The findings open the door to the testing of the thioredoxin system in the production of hypoallergenic, more-digestible foods.
Resumo:
Two-component signaling systems involving receptor-histidine kinases are ubiquitous in bacteria and have been found in yeast and plants. These systems provide the major means by which bacteria communicate with each other and the outside world. Remarkably, very little is known concerning the extracellular ligands that presumably bind to receptor-histidine kinases to initiate signaling. The two-component agr signaling circuit in Staphylococcus aureus is one system where the ligands are known in chemical detail, thus opening the door for detailed structure–activity relationship studies. These ligands are short (8- to 9-aa) peptides containing a thiolactone structure, in which the α-carboxyl group of the C-terminal amino acid is linked to the sulfhydryl group of a cysteine, which is always the fifth amino acid from the C terminus of the peptide. One unique aspect of the agr system is that peptides that activate virulence expression in one group of S. aureus strains also inhibit virulence expression in other groups of S. aureus strains. Herein, it is demonstrated by switching the receptor-histidine kinase, AgrC, between strains of different agr specificity types, that intragroup activation and intergroup inhibition are both mediated by the same group-specific receptors. These results have facilitated the development of a global inhibitor of virulence in S. aureus, which consists of a truncated version of one of the naturally occurring thiolactone peptides.
Resumo:
Thioredoxins are 12-kDa proteins functional in the regulation of cellular processes throughout the animal, plant, and microbial kingdoms. Growing evidence with seeds suggests that an h-type of thioredoxin, reduced by NADPH via NADP-thioredoxin reductase, reduces disulfide bonds of target proteins and thereby acts as a wakeup call in germination. A better understanding of the role of thioredoxin in seeds as well as other systems could be achieved if more were known about the target proteins. To this end, we have devised a strategy for the comprehensive identification of proteins targeted by thioredoxin. Tissue extracts incubated with reduced thioredoxin are treated with a fluorescent probe (monobromobimane) to label sulfhydryl groups. The newly labeled proteins are isolated by conventional two-dimensional electrophoresis: (i) nonreducing/reducing or (ii) isoelectric focusing/reducing SDS/PAGE. The isolated proteins are identified by amino acid sequencing. Each electrophoresis system offers an advantage: the first method reveals the specificity of thioredoxin in the reduction of intramolecular vs. intermolecular disulfide bonds, whereas the second method improves the separation of the labeled proteins. By application of both methods to peanut seed extracts, we isolated at least 20 thioredoxin targets and identified 5—three allergens (Ara h2, Ara h3, and Ara h6) and two proteins not known to occur in peanut (desiccation-related and seed maturation protein). These findings open the door to the identification of proteins targeted by thioredoxin in a wide range of systems, thereby enhancing our understanding of its function and extending its technological and medical applications.
Resumo:
Advances in digital speech processing are now supporting application and deployment of a variety of speech technologies for human/machine communication. In fact, new businesses are rapidly forming about these technologies. But these capabilities are of little use unless society can afford them. Happily, explosive advances in microelectronics over the past two decades have assured affordable access to this sophistication as well as to the underlying computing technology. The research challenges in speech processing remain in the traditionally identified areas of recognition, synthesis, and coding. These three areas have typically been addressed individually, often with significant isolation among the efforts. But they are all facets of the same fundamental issue--how to represent and quantify the information in the speech signal. This implies deeper understanding of the physics of speech production, the constraints that the conventions of language impose, and the mechanism for information processing in the auditory system. In ongoing research, therefore, we seek more accurate models of speech generation, better computational formulations of language, and realistic perceptual guides for speech processing--along with ways to coalesce the fundamental issues of recognition, synthesis, and coding. Successful solution will yield the long-sought dictation machine, high-quality synthesis from text, and the ultimate in low bit-rate transmission of speech. It will also open the door to language-translating telephony, where the synthetic foreign translation can be in the voice of the originating talker.