2 resultados para Dominants négatifs

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In conjunction with the Permian–Triassic ecologic crisis ≈250 million years ago, massive dieback of coniferous vegetation resulted in a degradation of terrestrial ecosystems in Europe. A 4- to 5-million-year period of lycopsid dominance followed, and renewed proliferation of conifers did not occur before the transition between Early and Middle Triassic. We document this delayed re-establishment of equatorial forests on the basis of palynological data. The reconstructed pattern of vegetational change suggests that habitat restoration, migration, and evolutionary processes acted synergistically, setting the stage for successional replacement of lycopsid dominants by conifers within a period of ≈0.5 million years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human-caused environmental changes are creating regional combinations of environmental conditions that, within the next 50 to 100 years, may fall outside the envelope within which many of the terrestrial plants of a region evolved. These environmental modifications might become a greater cause of global species extinction than direct habitat destruction. The environmental constraints undergoing human modification include levels of soil nitrogen, phosphorus, calcium and pH, atmospheric CO2, herbivore, pathogen, and predator densities, disturbance regimes, and climate. Extinction would occur because the physiologies, morphologies, and life histories of plants limit each species to being a superior competitor for a particular combination of environmental constraints. Changes in these constraints would favor a few species that would competitively displace many other species from a region. In the long-term, the “weedy” taxa that became the dominants of the novel conditions imposed by global change should become the progenitors of a series of new species that are progressively less weedy and better adapted to the new conditions. The relative importance of evolutionary versus community ecology responses to global environmental change would depend on the extent of regional and local recruitment limitation, and on whether the suite of human-imposed constraints were novel just regionally or on continental or global scales.