12 resultados para Domestication and rearing

em National Center for Biotechnology Information - NCBI


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A detailed restriction fragment length polymorphism map was used to determine the chromosomal locations and subgenomic distributions of quantitative trait loci (QTLs) segregating in a cross between cultivars of allotetraploid (AADD) Gossypium hirsutum (“Upland” cotton) and Gossypium barbadense (“Sea Island,” “Pima,” or “Egyptian” cotton) that differ markedly in the quality and quantity of seed epidermal fibers. Most QTLs influencing fiber quality and yield are located on the “D” subgenome, derived from an ancestor that does not produce spinnable fibers. D subgenome QTLs may partly account for the fact that domestication and breeding of tetraploid cottons has resulted in fiber yield and quality levels superior to those achieved by parallel improvement of “A” genome diploid cottons. The merger of two genomes with different evolutionary histories in a common nucleus appears to offer unique avenues for phenotypic response to selection. This may partly compensate for reduction in quantitative variation associated with polyploid formation and be one basis for the prominence of polyploids among extant angiosperms. These findings impel molecular dissection of the roles of divergent subgenomes in quantitative inheritance in many other polyploids and further exploration of both “synthetic” polyploids and exotic diploid genotypes for agriculturally useful variation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The maize genome is replete with chromosomal duplications and repetitive DNA. The duplications resulted from an ancient polyploid event that occurred over 11 million years ago. Based on DNA sequence data, the polyploid event occurred after the divergence between sorghum and maize, and hence the polyploid event explains some of the difference in DNA content between these two species. Genomic rearrangement and diploidization followed the polyploid event. Most of the repetitive DNA in the maize genome is retrotransposable elements, and they comprise 50% of the genome. Retrotransposon multiplication has been relatively recent—within the last 5–6 million years—suggesting that the proliferation of retrotransposons has also contributed to differences in DNA content between sorghum and maize. There are still unanswered questions about repetitive DNA, including the distribution of repetitive DNA throughout the genome, the relative impacts of retrotransposons and chromosomal duplication in plant genome evolution, and the hypothesized correlation of duplication events with transposition. Population genetic processes also affect the evolution of genomes. We discuss how centromeric genes should, in theory, contain less genetic diversity than noncentromeric genes. In addition, studies of diversity in the wild relatives of maize indicate that different genes have different histories and also show that domestication and intensive breeding have had heterogeneous effects on genetic diversity across genes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

While most effects of dopamine in the brain are mediated by the D1 and D2 receptor subtypes, other members of this G protein-coupled receptor family have potentially important functions. D3 receptors belong to the D2-like subclass of dopamine receptors, activation of which inhibits adenylyl cyclase. Using targeted mutagenesis in mouse embryonic stem cells, we have generated mice lacking functional D3 receptors. A premature chain-termination mutation was introduced in the D3 receptor gene after residue Arg-148 in the second intracellular loop of the predicted protein sequence. Binding of the dopamine antagonist [125I]iodosulpride to D3 receptors was absent in mice homozygous for the mutation and greatly reduced in heterozygous mice. Behavioral analysis of mutant mice showed that this mutation is associated with hyperactivity in an exploratory test. Homozygous mice lacking D3 receptors display increased locomotor activity and rearing behavior. Mice heterozygous for the D3 receptor mutation show similar, albeit less pronounced, behavioral alterations. Our findings indicate that D3 receptors play an inhibitory role in the control of certain behaviors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Maize (Zea mays ssp. mays) is genetically diverse, yet it is also morphologically distinct from its wild relatives. These two observations are somewhat contradictory: the first observation is consistent with a large historical population size for maize, but the latter observation is consistent with strong, diversity-limiting selection during maize domestication. In this study, we sampled sequence diversity, coupled with simulations of the coalescent process, to study the dynamics of a population bottleneck during the domestication of maize. To do this, we determined the DNA sequence of a 1,400-bp region of the Adh1 locus from 19 individuals representing maize, its presumed progenitor (Z. mays ssp. parviglumis), and a more distant relative (Zea luxurians). The sequence data were used to guide coalescent simulations of population bottlenecks associated with domestication. Our study confirms high genetic diversity in maize—maize contains 75% of the variation found in its progenitor and is more diverse than its wild relative, Z. luxurians—but it also suggests that sequence diversity in maize can be explained by a bottleneck of short duration and very small size. For example, the breadth of genetic diversity in maize is consistent with a founding population of only 20 individuals when the domestication event is 10 generations in length.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exogenous thyroid hormone (TH) induces premature differentiation of the zebrafish pectoral fins, which are analogous to the forelimbs of tetrapods. It accelerates the growth of the pelvic fins but not precociously. Goitrogens, which are chemical inhibitors of TH synthesis by the thyroid gland, inhibit the transition from larva to juvenile fish including the formation of scales, and pigment pattern; they stunt the growth of both pectoral and pelvic paired fins. Inhibition by goitrogens is rescued by the simultaneous addition of thyroxine. The effect of adding TH to the rearing water of the postembryonic Mexican axolotl was reinvestigated under conditions that permit continued growth and development. In addition to morphological changes that have been described, TH greatly stimulates axolotl limb growth causing the resulting larva to be proportioned as an adult in about two months. This study extends the known evolutionary relatedness of tetrapod limbs and fish fins to include the TH stimulation of salamander limb and zebrafish fin growth, and suggests that TH is required to complete the life cycle of a typical bony fish and a salamander at the same developmental stage that it controls anuran and flounder metamorphosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accelerator mass spectrometry age determinations of maize cobs (Zea mays L.) from Guilá Naquitz Cave in Oaxaca, Mexico, produced dates of 5,400 carbon-14 years before the present (about 6,250 calendar years ago), making those cobs the oldest in the Americas. Macrofossils and phytoliths characteristic of wild and domesticated Zea fruits are absent from older strata from the site, although Zea pollen has previously been identified from those levels. These results, together with the modern geographical distribution of wild Zea mays, suggest that the cultural practices that led to Zea domestication probably occurred elsewhere in Mexico. Guilá Naquitz Cave has now yielded the earliest macrofossil evidence for the domestication of two major American crop plants, squash (Cucurbita pepo) and maize.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analysis of the three most ancient Zea mays inflorescence fragments from Guilá Naquitz, Oaxaca, Mexico shows they did not disarticulate naturally, indicating that agricultural selection of domesticated teosinte was underway by 5,400 14C years before the present (about 4,200 dendrocalibrated years B.C.). The cooccurrence of two-ranked specimens with two rows and four rows of grain and numerous additional morphological characteristics of these specimens support hypotheses based on molecular and quantitative genetic analyses that maize evolved from teosinte. Domestication of the wild ancestor of maize occurred before the end of the 5th millennium B.C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crop gene pools have adapted to and sustained the demands of agricultural systems for thousands of years. Yet, very little is known about their content, distribution, architecture, or circuitry. The presumably shallow elite gene pools often continue to yield genetic gains while the exotic pools remain mostly untapped, uncharacterized, and underutilized. The concept and content of a crop’s gene pools are being changed by advancements in plant science and technology. In the first generation of plant genomics, DNA markers have refined some perceptions of genetic variation by providing a glimpse of a primary source, DNA polymorphism. The markers have provided new and more powerful ways of assessing genetic relationships, diversity, and merit by infusing genetic information for the first time in many scenarios or in a more comprehensive manner for others. As a result, crop gene pools may be supplemented through more rapid and directed methods from a greater variety of sources. Previously limited by the barriers of sexual reproduction, the native gene pools will soon be complemented by another gene pool (transgenes) and perhaps by other native exotic gene pools through comparative analyses of plants’ biological repertoire. Plant genomics will be an important force of change for crop improvement. The plant science community and crop gene pools may be united and enriched as never before. Also, the genomes and gene pools, the products of evolution and crop domestication, will be reduced and subjected to the vagaries and potential divisiveness of intellectual property considerations. Let the gains begin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Early in the development of plant evolutionary biology, genetic drift, fluctuations in population size, and isolation were identified as critical processes that affect the course of evolution in plant species. Attempts to assess these processes in natural populations became possible only with the development of neutral genetic markers in the 1960s. More recently, the application of historically ordered neutral molecular variation (within the conceptual framework of coalescent theory) has allowed a reevaluation of these microevolutionary processes. Gene genealogies trace the evolutionary relationships among haplotypes (alleles) with populations. Processes such as selection, fluctuation in population size, and population substructuring affect the geographical and genealogical relationships among these alleles. Therefore, examination of these genealogical data can provide insights into the evolutionary history of a species. For example, studies of Arabidopsis thaliana have suggested that this species underwent rapid expansion, with populations showing little genetic differentiation. The new discipline of phylogeography examines the distribution of allele genealogies in an explicit geographical context. Phylogeographic studies of plants have documented the recolonization of European tree species from refugia subsequent to Pleistocene glaciation, and such studies have been instructive in understanding the origin and domestication of the crop cassava. Currently, several technical limitations hinder the widespread application of a genealogical approach to plant evolutionary studies. However, as these technical issues are solved, a genealogical approach holds great promise for understanding these previously elusive processes in plant evolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nature of domestic cattle origins in Africa are unclear as archaeological data are relatively sparse. The earliest domesticates were humpless, or Bos taurus, in morphology and may have shared a common origin with the ancestors of European cattle in the Near East. Alternatively, local strains of the wild ox, the aurochs, may have been adopted by peoples in either continent either before or after cultural influence from the Levant. This study examines mitochondrial DNA displacement loop sequence variation in 90 extant bovines drawn from Africa, Europe, and India. Phylogeny estimation and analysis of molecular variance verify that sequences cluster significantly into continental groups. The Indian Bos indicus samples are most markedly distinct from the others, which is indicative of a B. taurus nature for both European and African ancestors. When a calibration of sequence divergence is performed using comparisons with bison sequences and an estimate of 1 Myr since the Bison/Bos Leptobos common ancestor, estimates of 117-275,000 B.P. and 22-26,000 B.P. are obtained for the separation between Indians and others and between African and European ancestors, respectively. As cattle domestication is thought to have occurred approximately 10,000 B.P., these estimates suggest the domestication of genetically discrete aurochsen strains as the origins of each continental population. Additionally, patterns of variation that are indicative of population expansions (probably associated with the domestication process) are discernible in Africa and Europe. Notably, the genetic signatures of these expansions are clearly younger than the corresponding signature of African/European divergence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is increasing evidence for an important role of adverse early experience on the development of major psychiatric disorders in adulthood. Corticotropin-releasing factor (CRF), an endogenous neuropeptide, is the primary physiological regulator of the mammalian stress response. Grown nonhuman primates who were exposed as infants to adverse early rearing conditions were studied to determine if long-term alterations of CRF neuronal systems had occurred following the early stressor. In comparison to monkeys reared by mothers foraging under predictable conditions, infant monkeys raised by mothers foraging under unpredictable conditions exhibited persistently elevated cerebrospinal fluid (CSF) concentrations of CRF. Because hyperactivity of CRF-releasing neurons has been implicated in the pathophysiology of certain human affective and anxiety disorders, the present finding provides a potential neurobiological mechanism by which early-life stressors may contribute to adult psychopathology.