10 resultados para Diurnal Rhythm
em National Center for Biotechnology Information - NCBI
Resumo:
Serotonin N-acetyltransferase is the enzyme responsible for the diurnal rhythm of melatonin production in the pineal gland of animals and humans. Inhibitors of this enzyme active in cell culture have not been reported previously. The compound N-bromoacetyltryptamine was shown to be a potent inhibitor of this enzyme in vitro and in a pineal cell culture assay (IC50 ≈ 500 nM). The mechanism of inhibition is suggested to involve a serotonin N-acetyltransferase-catalyzed alkylation reaction between N-bromoacetyltryptamine and reduced CoA, resulting in the production of a tight-binding bisubstrate analog inhibitor. This alkyltransferase activity is apparently catalyzed at a functionally distinct site compared with the acetyltransferase activity active site on serotonin N-acetyltransferase. Such active site plasticity is suggested to result from a subtle conformational alteration in the protein. This plasticity allows for an unusual form of mechanism-based inhibition with multiple turnovers, resulting in “molecular fratricide.” N-bromoacetyltryptamine should serve as a useful tool for dissecting the role of melatonin in circadian rhythm as well as a potential lead compound for therapeutic use in mood and sleep disorders.
Resumo:
Regulation of rhythmic peaks in levels of endogenous gibberellins (GAs) by photoperiod was studied in the short-day monocot sorghum (Sorghum bicolor [L.] Moench). Comparisons were made between three maturity (Ma) genotypes: 58M (Ma1Ma1, Ma2Ma2, phyB-1phyB-1, and Ma4Ma4 [a phytochrome B null mutant]); 90M (Ma1Ma1, Ma2Ma2, phyB-2phyB-2, and Ma4Ma4); and 100M (Ma1Ma1, Ma2Ma2, PHYBPHYB, and Ma4Ma4). Plants were grown for 14 d under 10-, 14-, 16-, 18-, and 20-h photoperiods, and GA levels were assayed by gas chromatography-mass spectrometry every 3 h for 24 h. Under inductive 10-h photoperiods, the peak of GA20 and GA1 levels in 90M and 100M was shifted from midday, observed earlier with 12-h photoperiods, to an early morning peak, and flowering was hastened. In addition, the early morning peaks in levels of GA20 and GA1 in 58M under conditions allowing early flowering (10-, 12-, and 14-h photoperiods) were shifted to midday by noninductive (18- and 20-h) photoperiods, and flowering was delayed. These results are consistent with the possibility that the diurnal rhythm of GA levels plays a role in floral initiation and may be one way by which the absence of phytochrome B causes early flowering in 58M under most photoperiods.
Resumo:
The sorghum (Sorghum bicolor L. Moench) cultivar 58M, which contains the null mutant phytochrome B gene, shows reduced photoperiodic sensitivity and exhibits a shade-avoidance phenotype. Ethylene production by seedlings of wild-type and phytochrome B mutant cultivars was monitored every 3 h, and both cultivars were found to produce ethylene in a circadian rhythm, with peak production occurring during the day. The phytochrome B mutant produces rhythmic peaks of ethylene with approximately 10 times the amplitude of the wild-type counterpart with the same period and diurnal timing. The source of the mutant's additional ethylene is the shoot. The diurnal rhythm can be produced with either light or temperature cycles; however, both light and temperature cycles are required for circadian entrainment. The temperature signal overrides the light signal in the production of diurnal rhythms, because seedlings grown under thermoperiods reversed with the photoperiod produced ethylene peaks during the warm nights. To examine the effect of extreme shading on ethylene production, seedlings were grown under dim, far-red-enriched light. This treatment duplicated the phytochrome B mutant's shade-avoidance phenotype in the wild type and caused the wild type to produce ethylene peaks similar to those observed in the mutant. The results confirm that phytochrome B is not required for proper function of circadian timing, but it may be involved in modulating physiological rhythms driven by the biological clock oscillator.
Resumo:
In insects, neurotransmitter catabolism, melatonin precursor formation, and sclerotization involve arylalkylamine N-acetyltransferase (aaNAT, EC 2.3.1.87) activity. It is not known if one or multiple aaNAT enzymes are responsible for these activities. We recently have purified an aaNAT from Drosophila melanogaster. Here, we report the cloning of the corresponding aaNAT cDNA (aaNAT1) that upon COS cell expression acetylates dopamine, tryptamine, and the immediate melatonin precursor serotonin. aaNAT1 represents a novel gene family unrelated to known acetyl-transferases, except in two weakly conserved amino acid motifs. In situ hybridization studies of aaNAT1 mRNA in embryos reveal hybridization signals in the brain, the ventral cord, the gut, and probably in oenocytes, indicating a broad tissue distribution of aaNAT1 transcripts. Moreover, in day/ night studies we demonstrate a diurnal rhythm of melatonin concentration without a clear-cut change in aaNAT1 mRNA levels. The data suggest that tissue-specific regulation of aaNAT1 may be associated with different enzymatic functions and do not exclude the possibility of additional aaNAT genes.
Resumo:
Nocturnal melatonin production in the pineal gland is under the control of norepinephrine released from superior cervical ganglia afferents in a rhythmic manner, and of cyclic AMP. Cyclic AMP increases the expression of serotonin N-acetyltransferase and of inducible cAMP early repressor that undergo circadian oscillations crucial for the maintenance and regulation of the biological clock. In the present study, we demonstrate a circadian pattern of expression of the calcium/calmodulin activated adenylyl cyclase type 1 (AC1) mRNA in the rat pineal gland. In situ hybridization revealed that maximal AC1 mRNA expression occurred at midday (12:00-15:00), with a very low signal at night (0:00-3:00). We established that this rhythmic pattern was controlled by the noradrenergic innervation of the pineal gland and by the environmental light conditions. Finally, we observed a circadian responsiveness of the pineal AC activity to calcium/calmodulin, with a lag due to the processing of the protein. At midday, AC activity was inhibited by calcium (40%) either in the presence or absence of calmodulin, while at night the enzyme was markedly (3-fold) activated by the calcium-calmodulin complex. These findings suggest (i) the involvement of AC1 acting as the center of a gating mechanism, between cyclic AMP and calcium signals, important for the fine tuning of the pineal circadian rhythm; and (ii) a possible regulation of cyclic AMP on the expression of AC1 in the rat pineal gland.
Resumo:
Mutant sorghum (Sorghum bicolor [L.] Moench) deficient in functional phytochrome B exhibits reduced photoperiodic sensitivity and constitutively expresses a shade-avoidance phenotype. Under relatively bright, high red:far-red light, ethylene production by seedlings of wild-type and phytochrome B-mutant cultivars progresses through cycles in a circadian rhythm; however, the phytochrome B mutant produces ethylene peaks with approximately 10 times the amplitude of the wild type. Time-course northern blots show that the mutant's abundance of the 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase mRNA SbACO2 is cyclic and is commensurate with ethylene production, and that ACC oxidase activity follows the same pattern. Both SbACO2 abundance and ACC oxidase activity in the wild-type plant are very low under this regimen. ACC levels in the two cultivars did not demonstrate fluctuations coincident with the ethylene produced. Simulated shading caused the wild-type plant to mimic the phenotype of the mutant and to produce high amplitude rhythms of ethylene evolution. The circadian feature of the ethylene cycle is conditionally present in the mutant and absent in the wild-type plant under simulated shading. SbACO2 abundance in both cultivars demonstrates a high-amplitude diurnal cycle under these conditions; however, ACC oxidase activity, although elevated, does not exhibit a clear rhythm correlated with ethylene production. ACC levels in both cultivars show fluctuations corresponding to the ethylene rhythm previously observed. It appears that at least two separate mechanisms may be involved in generating high-amplitude ethylene rhythms in sorghum, one in response to the loss of phytochrome B function and another in response to shading.
Resumo:
Tuber formation in potato (Solanum tuberosum) is promoted by short photoperiods and is inhibited by gibberellins (GAs). Endogenous levels of GA1 were shown to decrease in stolons and leaves of potato plants induced to tuberize, which suggests that photoperiodic regulation of GA biosynthesis may play a role in tuber induction. We report the isolation of three potato cDNA clones (StGA20ox1–3) encoding GA 20-oxidase, a key regulatory enzyme in the GA-biosynthetic pathway. Using northern analysis, we detected a differential pattern of tissue-specific expression of the mRNAs corresponding to these clones. StGA20ox mRNAs were also very abundant in leaves of the potato ga1 mutant, which is blocked in the 13-hydroxylation step, and were strongly down-regulated by gibberellic acid, suggesting a feedback regulation of these genes. In plants grown in short-day (inductive) conditions, levels of the StGA20ox transcripts in leaves fluctuated during a 24-h period, with a peak of accumulation observed about 4 h after the lights were turned off. Interruption of the night with a 30-min “night break” of light (noninductive conditions) did not have a marked effect on the levels of accumulation of the three GA 20-oxidase mRNAs during the day, but it induced a second peak of expression of StGA20ox1 and StGA20ox3 transcripts late in the night. This observation, together with the finding that StGA20ox1 mRNA is expressed at high levels in leaves, suggests that night-break induction of this gene might play a role in the control of tuberization by regulating endogenous levels of GAs in response to daylength conditions.
Resumo:
We isolated and characterized a novel light-regulated cDNA from the short-day plant Pharbitis nil that encodes a protein with a leucine (Leu) zipper motif, designated PNZIP (Pharbitis nil Leu zipper). The PNZIP cDNA is not similar to any other gene with a known function in the database, but it shares high sequence homology with an Arabidopsis expressed sequence tag and to two other sequences of unknown function from the cyanobacterium Synechocystis spp. and the red alga Porphyra purpurea, which together define a new family of evolutionarily conserved Leu zipper proteins. PNZIP is a single-copy gene that is expressed specifically in leaf photosynthetically active mesophyll cells but not in other nonphotosynthetic tissues such as the epidermis, trichomes, and vascular tissues. When plants were exposed to continuous darkness, PNZIP exhibited a rhythmic pattern of mRNA accumulation with a circadian periodicity of approximately 24 h, suggesting that its expression is under the control of an endogenous clock. However, the expression of PNZIP was unusual in that darkness rather than light promoted its mRNA accumulation. Accumulation of PNZIP mRNA during the dark is also regulated by phytochrome, since a brief exposure to red light in the middle of the night reduced its mRNA levels. Moreover, a far-red-light treatment at the end of day also reduced PNZIP mRNA accumulation during the dark, and that effect could be inhibited by a subsequent exposure to red light, showing the photoreversible response attributable to control through the phytochrome system.
Resumo:
Localization of the central rhythm generator (CRG) of spontaneous consummatory licking was studied in freely moving rats by microinjection of tetrodotoxin (TTX) into the pontine reticular formation. Maximum suppression of spontaneous water consumption was elicited by TTX (1 ng) blockade of the oral part of the nucleus reticularis gigantocellularis (NRG), whereas TTX injections into more caudal or rostral locations caused significantly weaker disruption of drinking. To verify the assumption that TTX blocked the proper CRG of licking rather than some relay in its output, spontaneously drinking thirsty rats were intracranially stimulated via electrodes chronically implanted into the oral part of the NRG. Lick-synchronized stimulation (a 100-ms train of 0.1-ms-wide rectangular pulses at 100 Hz and 25-150 microA) applied during continuous licking (after eight regular consecutive licks) caused a phase shift of licks emitted after stimulus delivery. The results suggest that the stimulation has reset the CRG of licking without changing its frequency. The reset-inducing threshold current was lowest during the tongue retraction and highest during the tongue protrusion period of the lick cycle. It is concluded that the CRG of licking is located in the oral part of NRG.
Resumo:
Prothoracicotropic hormone (PTTH) is the central cerebral neurohormone in insect development. Its release has been believed for decades to be confined to one (or two) critical moments early in each developmental stage at which time it triggers prolonged activation of the prothoracic glands to synthesize and release the steroid molting hormones (ecdysteroids), which elicit developmental responses in target tissues. We used an in vitro assay for PTTH released from excised brains of the bug Rhodnius prolixus and report that release of PTTH does occur at the expected time on day 6, but that this release is merely the first in a daily rhythm of release that continues throughout most of the 21 days of larval-adult development. This finding, together with reports of circadian control of ecdysteroid synthesis and titer throughout this time, raises significant challenges to several features of the current understanding of the hormonal control of insect development. New questions are raised concerning the function(s) of PTTH, its relationship with the prothoracic glands, and the significance of circadian rhythmicity throughout this endocrine axis. The significance of the reported observations derives from the set of entirely new questions they raise concerning the regulation of insect development.