11 resultados para Discursive universe

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

How much matter is there in the universe? Does the universe have the critical density needed to stop its expansion, or is the universe underweight and destined to expand forever? We show that several independent measures, especially those utilizing the largest bound systems known—clusters of galaxies—all indicate that the mass-density of the universe is insufficient to halt the expansion. A promising new method, the evolution of the number density of clusters with time, provides the most powerful indication so far that the universe has a subcritical density. We show that different techniques reveal a consistent picture of a lightweight universe with only ∼20–30% of the critical density. Thus, the universe may expand forever.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Observations of supernova explosions halfway back to the Big Bang give plausible evidence that the expansion of the universe has been accelerating since that epoch, approximately 8 billion years ago and suggest that energy associated with the vacuum itself may be responsible for the acceleration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gravitational lenses, besides being interesting in their own right, have been demonstrated to be suitable as “gravitational standard rulers” for the measurement of the rate of expansion of the Universe (Ho), as well as to constrain the values of the cosmological parameters such as Ωo and Λo that control the evolution of the volume of the Universe with cosmic time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distinction of “largest explosions in the universe” has been bestowed on cosmic gamma-ray bursts. Their afterglows are brighter than supernovae and therefore are called hypernovae. Photometry and spectroscopy of these afterglows have provided major breakthroughs in our understanding of this mysterious phenomenon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The history and the ultimate future fate of the universe as a whole depend on how much the expansion of the universe is decelerated by its own mass. In particular, whether the expansion of the universe will ever come to a halt can be determined from the past expansion. However, the mass density in the universe does not only govern the expansion history and the curvature of space, but in parallel also regulates the growth of hierarchical structure, including the collapse of material into the dense, virialized regions that we identify with galaxies. Hence, the formation of galaxies and their clustered distribution in space depend not only on the detailed physics of how stars are formed but also on the overall structure of the universe. Recent observational efforts, fueled by new large, ground-based telescopes and the Hubble Space Telescope, combined with theoretical progress, have brought us to the verge of determining the expansion history of the universe and space curvature from direct observation and to linking this to the formation history of galaxies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The determination of the three-dimensional layout of galaxies is critical to our understanding of the evolution of galaxies and the structures in which they lie, to our determination of the fundamental parameters of cosmology, and to our understanding of both the past and future histories of the universe at large. The mapping of the large scale structure in the universe via the determination of galaxy red shifts (Doppler shifts) is a rapidly growing industry thanks to technological developments in detectors and spectrometers at radio and optical wavelengths. First-order application of the red shift-distance relation (Hubble’s law) allows the analysis of the large-scale distribution of galaxies on scales of hundreds of megaparsecs. Locally, the large-scale structure is very complex but the overall topology is not yet clear. Comparison of the observed red shifts with ones expected on the basis of other distance estimates allows mapping of the gravitational field and the underlying total density distribution. The next decade holds great promise for our understanding of the character of large-scale structure and its origin.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An overview is presented of the current situation regarding radioactive dating of the matter of which our Galaxy is comprised. A firm lower bound on the age from nuclear chronometers of ≈9–10 Gyr is entirely consistent with age determinations from globular clusters and white dwarf cooling histories. The reasonable assumption of an approximately uniform nucleosynthesis rate yields an age for the Galaxy of 12.8 ± 3 Gyr, which again is consistent with current determinations from other methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers how the first subgalactic structures produced the UV radiation that ionized the intergalactic medium before z = 5 and the “feedback” effects of the UV radiation on structure formation. The first “pregalaxies” may eventually be detectable by their direct UV emission, with characteristic spectral features at Lyman α; high-z supernovae may also be detectable. Other probes of the intergalactic medium beyond z = 5, and of the epochs of reheating and reionization, are discussed, along with possible links between the diffusion of pregalactic metals and the origin of magnetic fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Observations of microwave background fluctuations can yield information not only about the geometry of the universe but potentially about the topology of the universe. If the universe is negatively curved, then the characteristic scale for the topology of the universe is the curvature radius. Thus, if we are seeing the effects of the geometry of the universe, we can hope to soon see signatures of the topology of the universe. The cleanest signature of the topology of the universe is written on the microwave sky: There should be thousands of pairs of matched circles. These circles can be used to determine the precise topology and volume of the universe. Because we see hundreds of slices through the fundamental domain of the universe, we can use the microwave observations to reconstruct the initial conditions of the entire universe on the scale of a few megaparsecs.