5 resultados para Discriminative Itemsets
em National Center for Biotechnology Information - NCBI
Resumo:
Following striate cortex damage in monkeys and humans there can be residual function mediated by parallel visual pathways. In humans this can sometimes be associated with a “feeling” that something has happened, especially with rapid movement or abrupt onset. For less transient events, discriminative performance may still be well above chance even when the subject reports no conscious awareness of the stimulus. In a previous study we examined parameters that yield good residual visual performance in the “blind” hemifield of a subject with unilateral damage to the primary visual cortex. With appropriate parameters we demonstrated good discriminative performance, both with and without conscious awareness of a visual event. These observations raise the possibility of imaging the brain activity generated in the “aware” and the “unaware” modes, with matched levels of discrimination performance, and hence of revealing patterns of brain activation associated with visual awareness. The intact hemifield also allows a comparison with normal vision. Here we report the results of a functional magnetic resonance imaging study on the same subject carried out under aware and unaware stimulus conditions. The results point to a shift in the pattern of activity from neocortex in the aware mode, to subcortical structures in the unaware mode. In the aware mode prestriate and dorsolateral prefrontal cortices (area 46) are active. In the unaware mode the superior colliculus is active, together with medial and orbital prefrontal cortical sites.
Resumo:
The conditioning of cocaine's subjective actions with environmental stimuli may be a critical factor in long-lasting relapse risk associated with cocaine addiction. To study the significance of learning factors in persistent addictive behavior as well as the neurobiological basis of this phenomenon, rats were trained to associate discriminative stimuli (SD) with the availability of i.v. cocaine vs. nonrewarding saline solution, and then placed on extinction conditions during which the i.v. solutions and SDs were withheld. The effects of reexposure to the SD on the recovery of responding at the previously cocaine-paired lever and on Fos protein expression then were determined in two groups. One group was tested immediately after extinction, whereas rats in the second group were confined to their home cages for an additional 4 months before testing. In both groups, the cocaine SD, but not the non-reward SD, elicited strong recovery of responding and increased Fos immunoreactivity in the basolateral amygdala and medial prefrontal cortex (areas Cg1/Cg3). The response reinstatement and Fos expression induced by the cocaine SD were both reversed by selective dopamine D1 receptor antagonists. The undiminished efficacy of the cocaine SD to elicit drug-seeking behavior after 4 months of abstinence parallels the long-lasting nature of conditioned cue reactivity and cue-induced cocaine craving in humans, and confirms a significant role of learning factors in the long-lasting addictive potential of cocaine. Moreover, the results implicate D1-dependent neural mechanisms within the medial prefrontal cortex and basolateral amygdala as substrates for cocaine-seeking behavior elicited by cocaine-predictive environmental stimuli.
Resumo:
Pain is a unified experience composed of interacting discriminative, affective-motivational, and cognitive components, each of which is mediated and modulated through forebrain mechanisms acting at spinal, brainstem, and cerebral levels. The size of the human forebrain in relation to the spinal cord gives anatomical emphasis to forebrain control over nociceptive processing. Human forebrain pathology can cause pain without the activation of nociceptors. Functional imaging of the normal human brain with positron emission tomography (PET) shows synaptically induced increases in regional cerebral blood flow (rCBF) in several regions specifically during pain. We have examined the variables of gender, type of noxious stimulus, and the origin of nociceptive input as potential determinants of the pattern and intensity of rCBF responses. The structures most consistently activated across genders and during contact heat pain, cold pain, cutaneous laser pain or intramuscular pain were the contralateral insula and anterior cingulate cortex, the bilateral thalamus and premotor cortex, and the cerebellar vermis. These regions are commonly activated in PET studies of pain conducted by other investigators, and the intensity of the brain rCBF response correlates parametrically with perceived pain intensity. To complement the human studies, we developed an animal model for investigating stimulus-induced rCBF responses in the rat. In accord with behavioral measures and the results of human PET, there is a progressive and selective activation of somatosensory and limbic system structures in the brain and brainstem following the subcutaneous injection of formalin. The animal model and human PET studies should be mutually reinforcing and thus facilitate progress in understanding forebrain mechanisms of normal and pathological pain.
Resumo:
We report here on the ability of IDRA 21 and aniracetam, two negative allosteric modulators of glutamate-induced DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor desensitization, to attenuate alprazolam-induced learning deficit in patas monkeys working in a complex behavioral task. In one component of a multiple schedule (repeated acquisition or "learning"), patas monkeys acquired a different four-response chain each session by responding sequentially on three keys in the presence of four discriminative stimuli (geometric forms or numerals). In the other component (performance) the four-response chain was the same each session. The response chain in each component was maintained by food presentation under a fixed-ratio schedule. When alprazolam (0.1 or 0.32 mg/kg p.o.) was administered alone, this full allosteric modulator of gamma-aminobutyric acid type A (GABAA) receptors produced large decreases in the response rate and accuracy in the learning component of the task. IDRA 21 (3 or 5.6 mg/kg p.o.) and aniracetam (30 mg/kg p.o.) administered 60 min before alprazolam, having no effect when given alone, antagonized the large disruptive effects of alprazolam on learning. From dose-response studies, it can be estimated that IDRA 21 is approximately 10-fold more potent than aniracetam in antagonizing alprazolam-induced learning deficit. We conclude that IDRA 21, a chemically unrelated pharmacological congener of aniracetam, improves learning deficit induced in patas monkeys by the increase of GABAergic tone elicited by alprazolam. Very likely IDRA 21 exerts its behavioral effects by antagonizing AMPA receptor desensitization.
Resumo:
Vicarious trial-and-error (VTE) is a term that Muenzinger and Tolman used to describe the rat's conflict-like behavior before responding to choice. Recently, VTE was proposed as a mechanism alternative to the concept of "cognitive map" in accounts of hippocampal function. That is, many phenomena of impaired learning and memory related to hippocampal interventions may be explained by behavioral first principles: reduced conflicting, incipient, pre-choice tendencies to approach and avoid. The nonspatial black-white discrimination learning and VTE behavior of the rat were investigated. Hippocampal-lesioned and sham-lesioned animals were trained for 25 days (20 trials per day) starting at 60 days of age. Each movement of the head from one discriminative stimulus to the other was counted as a VTE instance. Lesioned rats had fewer VTEs than sham controls, and the former learned much more slowly or never learned. After learning, VTE frequency declined. Male and female rats showed no significant differences in VTE behavior or discrimination learning.