4 resultados para Discretion of the Rio de Janeiro State Institute for Environment

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-resolved excited-state absorption intensities after direct two-photon excitation of the carotenoid S1 state are reported for light-harvesting complexes of purple bacteria. Direct excitation of the carotenoid S1 state enables the measurement of subsequent dynamics on a fs time scale without interference from higher excited states, such as the optically allowed S2 state or the recently discovered dark state situated between S1 and S2. The lifetimes of the carotenoid S1 states in the B800-B850 complex and B800-B820 complex of Rhodopseudomonas acidophila are 7 ± 0.5 ps and 6 ± 0.5 ps, respectively, and in the light-harvesting complex 2 of Rhodobacter sphaeroides ≈1.9 ± 0.5 ps. These results explain the differences in the carotenoid to bacteriochlorophyll energy transfer efficiency after S2 excitation. In Rps. acidophila the carotenoid S1 to bacteriochlorophyll energy transfer is found to be quite inefficient (φET1 <28%) whereas in Rb. sphaeroides this energy transfer is very efficient (φET1 ≈80%). The results are rationalized by calculations of the ensemble averaged time constants. We find that the Car S1 → B800 electronic energy transfer (EET) pathway (≈85%) dominates over Car S1 → B850 EET (≈15%) in Rb. sphaeroides, whereas in Rps. acidophila the Car S1 → B850 EET (≈60%) is more efficient than the Car S1 → B800 EET (≈40%). The individual electronic couplings for the Car S1 → BChl energy transfer are estimated to be approximately 5–26 cm−1. A major contribution to the difference between the energy transfer efficiencies can be explained by different Car S1 energy gaps in the two species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calcium binding to the N-domain of troponin C initiates a series of conformational changes that lead to muscle contraction. Calcium binding provides the free energy for a hydrophobic region in the core of N-domain to assume a more open configuration. Fluorescence measurements on a tryptophan mutant (F29W) show that a similar conformational change occurs in the absence of Ca2+ when the temperature is lowered under pressure. The conformation induced by subzero temperatures binds the hydrophobic probe bis-aminonaphthalene sulfonate, and the tryptophan has the same fluorescence lifetime (7 ns) as in the Ca2+-bound form. The decrease in volume (delta V = -25.4 ml/mol) corresponds to an increase in surface area. Thermodynamic measurements suggest an enthalpy-driven conformational change that leads to an intermediate with an exposed N-domain core and a high affinity for Ca2+.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transgenic mice expressing the sequences coding for the envelope proteins of the hepatitis B virus (HBV) in the liver have been used as a model of the HBV chronic carrier state. We evaluated the possibility of inducing a specific immune response to the viral envelope antigens and thus potentially controlling chronic HBV infection. Using HBV-specific DNA-mediated immunization in this transgenic model, we show that the immune response induced after a single intramuscular injection of DNA resulted in the complete clearance of circulating hepatitis B surface antigen and in the long-term control of transgene expression in hepatocytes. This response does not involve a detectable cytopathic effect in the liver. Adoptive transfer of fractionated primed spleen cells from DNA-immunized mice shows that T cells are responsible for the down-regulation of HBV mRNA in the liver of transgenic mice. To our knowledge, this is the first demonstration of a potential immunotherapeutic application of DNA-mediated immunization against an infectious disease and raises the possibility of designing more effective ways of treating HBV chronic carriers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystal structure of the tyrosine-bound T state of allosteric yeast Saccharomyces cerevisiae chorismate mutase was solved by molecular replacement at a resolution of 2.8 angstroms using a monomer of the R-state structure as the search model. The allosteric inhibitor tyrosine was found to bind in the T state at the same binding site as the allosteric activator tryptophan binds in the R state, thus defining one regulatory binding site for each monomer. Activation by tryptophan is caused by the larger steric size of its side chain, thereby pushing apart the allosteric domain of one monomer and helix H8 of the catalytic domain of the other monomer. Inhibition is caused by polar contacts of tyrosine with Arg-75 and Arg-76 of one monomer and with Gly-141, Ser-142, and Thr-145 of the other monomer, thereby bringing the allosteric and catalytic domains closer together. The allosteric transition includes an 8 degree rotation of each of the two catalytic domains relative to the allosteric domains of each monomer (domain closure). Alternatively, this transition can be described as a 15 degree rotation of the catalytic domains of the dimer relative to each other.