4 resultados para Direct Contribution

em National Center for Biotechnology Information - NCBI


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Numerous human and animal studies indirectly implicate neurons in the anterior cingulate cortex (ACC) in the encoding of the affective consequences of nociceptor stimulation. No causal evidence, however, has been put forth linking the ACC specifically to this function. Using a rodent pain assay that combines the hind-paw formalin model with the place-conditioning paradigm, we measured a learned behavior that directly reflects the affective component of pain in the rat (formalin-induced conditioned place avoidance) concomitantly with “acute” formalin-induced nociceptive behaviors (paw lifting, licking, and flinching) that reflect the intensity and localization of the nociceptive stimulus. Destruction of neurons originating from the rostral, but not caudal, ACC reduced formalin-induced conditioned place avoidance without reducing acute pain-related behaviors. These results provide evidence indicating that neurons in the ACC are necessary for the “aversiveness” of nociceptor stimulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mutant forms of the BRCA2 gene contribute significantly to hereditary breast cancer. Isolation of the normal and mutant forms of the BRCA2 gene with its natural promoter would greatly facilitate analysis of the gene and its contribution to breast cancer. We have accomplished the direct isolation of the 90-kb gene from total human DNA by transformation-associated recombination in yeast using a small amount of 5′ and 3′ BRCA2 sequence information. Because the entire isolation procedure of a single chromosomal gene could be accomplished in approximately 2 weeks, the transformation-associated recombination cloning approach is readily applicable to studies of chromosome alterations and human genetic diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Autoimmune diseases such as systemic lupus erythematosus are complex genetic traits with contributions from major histocompatibility complex (MHC) genes and multiple unknown non-MHC genes. Studies of animal models of lupus have provided important insight into the immunopathogenesis of disease, and genetic analyses of these models overcome certain obstacles encountered when studying human patients. Genome-wide scans of different genetic crosses have been used to map several disease-linked loci in New Zealand hybrid mice. Although some consensus exists among studies mapping the New Zealand Black (NZB) and New Zealand White (NZW) loci that contribute to lupus-like disease, considerable variability is also apparent. A variable in these studies is the genetic background of the non-autoimmune strain, which could influence genetic contributions from the affected strain. A direct examination of this question was undertaken in the present study by mapping NZB nephritis-linked loci in backcrosses involving different non-autoimmune backgrounds. In a backcross with MHC-congenic C57BL/6J mice, H2z appeared to be the strongest genetic determinant of severe lupus nephritis, whereas in a backcross with congenic BALB/cJ mice, H2z showed no influence on disease expression. NZB loci on chromosomes 1, 4, 11, and 14 appeared to segregate with disease in the BALB/cJ cross, but only the influence of the chromosome 1 locus spanned both crosses and showed linkage with disease when all mice were considered. Thus, the results indicate that contributions from disease-susceptibility loci, including MHC, may vary markedly depending on the non-autoimmune strain used in a backcross analysis. These studies provide insight into variables that affect genetic heterogeneity and add an important dimension of complexity for linkage analyses of human autoimmune disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Position 57 in the beta chain of HLA class II molecules maintains an Asp/non-Asp dimorphism that has been conserved through evolution and is implicated in susceptibility to some autoimmune diseases. The latter effect may be due to the influence of this residue on the ability of class II alleles to bind specific pathogenic peptides. We utilized highly homologous pairs of both DR and DQ alleles that varied at residue 57 to investigate the impact of this dimorphism on binding of model peptides. Using a direct binding assay of biotinylated peptides on whole cells expressing the desired alleles, we report several peptides that bind differentially to the allele pairs depending on the presence or absence of Asp at position 57. Peptides with negatively charged residues at anchor position 9 bind well to alleles not containing Asp at position 57 in the beta chain but cannot bind well to homologous Asp-positive alleles. By changing the peptides at the single residue predicted to interact with this position 57, we demonstrate a drastically altered or reversed pattern of binding. Ala analog peptides confirm these interactions and identify a limited set of interaction sites between the bound peptides and the class II molecules. Clarification of the impact of specific class II polymorphisms on generating unique allele-specific peptide binding "repertoires" will aid in our understanding of the development of specific immune responses and HLA-associated diseases.