14 resultados para Dim Target Detection
em National Center for Biotechnology Information - NCBI
Resumo:
At early stages in visual processing cells respond to local stimuli with specific features such as orientation and spatial frequency. Although the receptive fields of these cells have been thought to be local and independent, recent physiological and psychophysical evidence has accumulated, indicating that the cells participate in a rich network of local connections. Thus, these local processing units can integrate information over much larger parts of the visual field; the pattern of their response to a stimulus apparently depends on the context presented. To explore the pattern of lateral interactions in human visual cortex under different context conditions we used a novel chain lateral masking detection paradigm, in which human observers performed a detection task in the presence of different length chains of high-contrast-flanked Gabor signals. The results indicated a nonmonotonic relation of the detection threshold with the number of flankers. Remote flankers had a stronger effect on target detection when the space between them was filled with other flankers, indicating that the detection threshold is caused by dynamics of large neuronal populations in the neocortex, with a major interplay between excitation and inhibition. We considered a model of the primary visual cortex as a network consisting of excitatory and inhibitory cell populations, with both short- and long-range interactions. The model exhibited a behavior similar to the experimental results throughout a range of parameters. Experimental and modeling results indicated that long-range connections play an important role in visual perception, possibly mediating the effects of context.
Resumo:
Ancient septicemic plague epidemics were reported to have killed millions of people for 2 millenniums. However, confident diagnosis of ancient septicemia solely on the basis of historical clinical observations is not possible. The lack of suitable infected material has prevented direct demonstration of ancient septicemia; thus, the history of most infections such as plague remains hypothetical. The durability of dental pulp, together with its natural sterility, makes it a suitable material on which to base such research. We hypothesized that it would be a lasting refuge for Yersinia pestis, the plague agent. DNA extracts were made from the dental pulp of 12 unerupted teeth extracted from skeletons excavated from 16th and 18th century French graves of persons thought to have died of plague (“plague teeth”) and from 7 ancient negative control teeth. PCRs incorporating ancient DNA extracts and primers specific for the human β-globin gene demonstrated the absence of inhibitors in these preparations. The incorporation of primers specific for Y. pestis rpoB (the RNA polymerase β-subunit-encoding gene) and the recognized virulence-associated pla (the plasminogen activator-encoding gene) repeatedly yielded products that had a nucleotide sequence indistinguishable from that of modern day isolates of the bacterium. The specific pla sequence was obtained from 6 of 12 plague skeleton teeth but 0 of 7 negative controls (P < 0.034, Fisher exact test). A nucleic acid-based confirmation of ancient plague was achieved for historically identified victims, and we have confirmed the presence of the disease at the end of 16th century in France. Dental pulp is an attractive target in the quest to determine the etiology of septicemic illnesses detected in ancient corpses. Molecular techniques could be applied to this material to resolve historical outbreaks.
Resumo:
A sensitive, labor-saving, and easily automatable nonradioactive procedure named APEX-FCS (amplified probe extension detected by fluorescence correlation spectroscopy) has been established to detect specific in vitro amplification of pathogen genomic sequences. As an example, Mycobacterium tuberculosis genomic DNA was subjected to PCR amplification with the Stoffel fragment of Thermus aquaticus DNA polymerase in the presence of nanomolar concentrations of a rhodamine-labeled probe (third primer), binding to the target in between the micromolar amplification primers. The probe becomes extended only when specific amplification occurs. Its low concentration avoids false-positives due to unspecific hybridization under PCR conditions. With increasing portion of extended probe molecules, the probe’s average translational diffusion properties gradually change over the course of the reaction, reflecting amplification kinetics. Following PCR, this change from a stage of high to a stage of low mobility can directly be monitored during a 30-s measurement using a fluorescence correlation spectroscopy device. Quantitation down to 10 target molecules in a background of 2.5 μg unspecific DNA without post-PCR probe manipulations could be achieved with different primer/probe combinations. The assay holds the promise to concurrently perform amplification, probe hybridization, and specific detection without opening the reaction chamber, if sealable foils are used.
Resumo:
The invasive signal amplification reaction has been previously developed for quantitative detection of nucleic acids and discrimination of single-nucleotide polymorphisms. Here we describe a method that couples two invasive reactions into a serial isothermal homogeneous assay using fluorescence resonance energy transfer detection. The serial version of the assay generates more than 107 reporter molecules for each molecule of target DNA in a 4-h reaction; this sensitivity, coupled with the exquisite specificity of the reaction, is sufficient for direct detection of less than 1,000 target molecules with no prior target amplification. Here we present a kinetic analysis of the parameters affecting signal and background generation in the serial invasive signal amplification reaction and describe a simple kinetic model of the assay. We demonstrate the ability of the assay to detect as few as 600 copies of the methylene tetrahydrofolate reductase gene in samples of human genomic DNA. We also demonstrate the ability of the assay to discriminate single base differences in this gene by using 20 ng of human genomic DNA.
Resumo:
We have developed a simple method for the quantitative detection of specific DNA or RNA molecules based on the finding that BODIPY® FL fluorescence was quenched by its interaction with a uniquely positioned guanine. This approach makes use of an oligonucleotide probe or primer containing a BODIPY® FL-modified cytosine at its 5′-end. When such a probe was hybridized with a target DNA, its fluorescence was quenched by the guanine in the target, complementary to the modified cytosine, and the quench rate was proportional to the amount of target DNA. This widely applicable technique will be used directly with larger samples or in conjunction with the polymerase chain reaction to quantify small DNA samples.
Resumo:
We have developed a novel allele-specific primer elongation protocol using a DNA polymerase on oligonucleotide chips. Oligonucleotide primers carrying polymorphic sites at their free 3́end were covalently bound to glass slides. The generation of single-stranded targets of genomic DNA containing single nuclotide polymorphisms (SNPs) to be typed was achieved by an asymmetric PCR reaction or exonuclease treatment of phosphothioate (PTO)-modified PCR products. In the presence of DNA polymerase and all four dNTPs, with Cy3-dUTP replacing dTTP, allele-specific extension of the immobilized primers took place along a stretch of target DNA sequence. The yield of elongated products was increased by repeated reaction cycles. We performed multiplexed assays with many small DNA targets, or used single targets of up to 4.4 kb mitochondrial DNA (mtDNA) sequence to detect multiple SNPs in one reaction. The latter approach greatly simplifies preamplification of SNP-containing regions, thereby providing a framework for typing hundreds of mtDNA polymorphisms.
Resumo:
Transcription-coupled repair (TCR) plays an important role in removing DNA damage from actively transcribed genes. It has been speculated that TCR is the most important mechanism for repairing DNA damage in non-dividing cells such as neurons. Therefore, abnormal TCR may contribute to the development of many age-related and neurodegenerative diseases. However, the molecular mechanism of TCR is not well understood. Oligonucleotide DNA triplex formation provides an ideal system to dissect the molecular mechanism of TCR since triplexes can be formed in a sequence-specific manner to inhibit transcription of target genes. We have recently studied the molecular mechanism of triplex-forming oligonucleotide (TFO)-mediated TCR in HeLa nuclear extracts. Using plasmid constructs we demonstrate that the level of TFO-mediated DNA repair activity is directly correlated with the level of transcription of the plasmid in HeLa nuclear extracts. TFO-mediated DNA repair activity was further linked with transcription since the presence of rNTPs in the reaction was essential for AG30-mediated DNA repair activity in HeLa nuclear extracts. The involvement of individual components, including TFIID, TFIIH, RNA polymerase II and xeroderma pigmentosum group A (XPA), in the triplex-mediated TCR process was demonstrated in HeLa nuclear extracts using immunodepletion assays. Importantly, our studies also demonstrated that XPC, a component involved in global genome DNA repair, is involved in the AG30-mediated DNA repair process. The results obtained in this study provide an important new understanding of the molecular mechanisms involved in the TCR process in mammalian cells.
Resumo:
We have developed and characterized a system to analyze light effects on auxin transport independent of photosynthetic effects. Polar transport of [3H]indole-3-acetic acid through hypocotyl segments from etiolated cucumber (Cucumis sativus L.) seedlings was increased in seedlings grown in dim-red light (DRL) (0.5 μmol m−2 s−1) relative to seedlings grown in darkness. Both transport velocity and transport intensity (export rate) were increased by at least a factor of 2. Tissue formed in DRL completely acquired the higher transport capacity within 50 h, but tissue already differentiated in darkness acquired only a partial increase in transport capacity within 50 h of DRL, indicating a developmental window for light induction of commitment to changes in auxin transport. This light-induced change probably manifests itself by alteration of function of the auxin efflux carrier, as revealed using specific transport inhibitors. Relative to dark controls, DRL-grown seedlings were differentially less sensitive to two inhibitors of polar auxin transport, N-(naphth-1-yl) phthalamic acid and 2,3,5-triiodobenzoic acid. On the basis of these data, we propose that the auxin efflux carrier is a key target of light regulation during photomorphogenesis.
Resumo:
Genetic instability is thought to be responsible for the numerous genotypic changes that occur during neoplastic transformation and metastatic progression. To explore the role of genetic instability at the level of point mutations during mammary tumor development and malignant progression, we combined transgenic mouse models of mutagenesis detection and oncogenesis. Bitransgenic mice were generated that carried both a bacteriophage lambda transgene to assay mutagenesis and a polyomavirus middle T oncogene, mammary gland-targeted expression of which led to metastatic mammary adenocarcinomas. We developed a novel assay for the detection of mutations in the lambda transgene that selects for phage containing forward mutations only in the lambda cII gene, using an hfl- bacterial host. In addition to the relative ease of direct selection, the sensitivity of this assay for both spontaneous and chemically induced mutations was comparable to the widely used mutational target gene, lambda lacI, making the cII assay an attractive alternative for mutant phage recovery for any lambda-based mouse mutagenesis assay system. The frequencies of lambda cII- mutants were not significantly different in normal mammary epithelium, primary mammary adenocarcinomas, and pulmonary metastases. The cII mutational spectra in these tissues consisted mostly of G/C-->A/T transitions, a large fraction of which occurred at CpG dinucleotides. These data suggest that, in this middle T oncogene model of mammary tumor progression, a significant increase in mutagenesis is not required for tumor development or for metastatic progression.
Resumo:
We have developed a specific and sensitive nucleic acid amplification assay that is suitable for routine gene detection. The assay is based on a novel molecular genetic strategy in which two different RNA probes are hybridized to adjacent positions on a target nucleic acid and then ligated to form an amplifiable reporter RNA. The reporter RNA is then replicated up to a hundred billion-fold in a 30-min isothermal reaction that signals the presence of the target. The assay can detect fewer than 100 nucleic acid molecules; it provides quantitative results over a wide range of target concentrations and it employs a universal format that can detect any infectious agent.
Resumo:
The association between increased DNA-methyltransferase (DNA-MTase) activity and tumor development suggest a fundamental role for this enzyme in the initiation and progression of cancer. A true functional role for DNA-MTase in the neoplastic process would be further substantiated if the target cells affected by the initiating carcinogen exhibit changes in enzyme activity. This hypothesis was addressed by examining DNA-MTase activity in alveolar type II (target) and Clara (nontarget) cells from A/J and C3H mice that exhibit high and low susceptibility, respectively, for lung tumor formation. Increased DNA-MTase activity was found only in the target alveolar type II cells of the susceptible A/J mouse and caused a marked increase in overall DNA methylation in these cells. Both DNA-MTase and DNA methylation changes were detected 7 days after carcinogen exposure and, thus, were early events in neoplastic evolution. Increased gene expression was also detected by RNA in situ hybridization in hypertrophic alveolar type II cells of carcinogen-treated A/J mice, indicating that elevated levels of expression may be a biomarker for premalignancy. Enzyme activity increased incrementally during lung cancer progression and coincided with increased expression of the DNA-MTase activity are strongly associated with neoplastic development and constitute a key step in carcinogenesis. The detection of premalignant lung disease through increased DNA-MTase expression and the possibility of blocking the deleterious effects of this change with specific inhibitors will offer new intervention strategies for lung cancer.
Resumo:
The promoter of the bean PAL2 gene (encoding phenylalanine ammonia-lyase; EC 4.3.1.5) is a model for studies of tissue-restricted gene expression in plants. Petal epidermis is one of the tissues in which this promoter is activated in tobacco. Previous work suggested that a major factor establishing the pattern of PAL2 expression in tobacco petals is the tissue distribution of a protein closely related to Myb305, which is a Myb-like transcriptional activator from snapdragon. In the present work, we show that Myb305 expression in tobacco leaves causes ectopic activation of the PAL2 promoter. To achieve Myb305 expression in planta, a viral expression vector was used. This approach combines the utility of transient assays with the possibility of direct biochemical detection of the introduced factor and may have wider application for studying the function of plant transcription factors.
Resumo:
The challenge of the Human Genome Project is to increase the rate of DNA sequence acquisition by two orders of magnitude to complete sequencing of the human genome by the year 2000. The present work describes a rapid detection method using a two-dimensional optical wave guide that allows measurement of real-time binding or melting of a light-scattering label on a DNA array. A particulate label on the target DNA acts as a light-scattering source when illuminated by the evanescent wave of the wave guide and only the label bound to the surface generates a signal. Imaging/visual examination of the scattered light permits interrogation of the entire array simultaneously. Hybridization specificity is equivalent to that obtained with a conventional system using autoradiography. Wave guide melting curves are consistent with those obtained in the liquid phase and single-base discrimination is facile. Dilution experiments showed an apparent lower limit of detection at 0.4 nM oligonucleotide. This performance is comparable to the best currently known fluorescence-based systems. In addition, wave guide detection allows manipulation of hybridization stringency during detection and thereby reduces DNA chip complexity. It is anticipated that this methodology will provide a powerful tool for diagnostic applications that require rapid cost-effective detection of variations from known sequences.
Resumo:
We have developed a technique for isolating DNA markers tightly linked to a target region that is based on RLGS, named RLGS spot-bombing (RLGS-SB). RLGS-SB allows us to scan the genome of higher organisms quickly and efficiently to identify loci that are linked to either a target region or gene of interest. The method was initially tested by analyzing a C57BL/6-GusS mouse congenic strain. We identified 33 variant markers out of 10,565 total loci in a 4.2-centimorgan (cM) interval surrounding the Gus locus in 4 days of laboratory work. The validity of RLGS-SB to find DNA markers linked to a target locus was also tested on pooled DNA from segregating backcross progeny by analyzing the spot intensity of already mapped RLGS loci. Finally, we used RLGS-SB to identify DNA markers closely linked to the mouse reeler (rl) locus on chromosome 5 by phenotypic pooling. A total of 31 RLGS loci were identified and mapped to the target region after screening 8856 loci. These 31 loci were mapped within 11.7 cM surrounding rl. The average density of RLGS loci located in the rl region was 0.38 cM. Three loci were closely linked to rl showing a recombination frequency of 0/340, which is < 1 cM from rl. Thus, RLGS-SB provides an efficient and rapid method for the detection and isolation of polymorphic DNA markers linked to a trait or gene of interest.