3 resultados para Differential equations, Partial.

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schrödinger’s equation of a three-body system is a linear partial differential equation (PDE) defined on the 9-dimensional configuration space, ℝ9, naturally equipped with Jacobi’s kinematic metric and with translational and rotational symmetries. The natural invariance of Schrödinger’s equation with respect to the translational symmetry enables us to reduce the configuration space to that of a 6-dimensional one, while that of the rotational symmetry provides the quantum mechanical version of angular momentum conservation. However, the problem of maximizing the use of rotational invariance so as to enable us to reduce Schrödinger’s equation to corresponding PDEs solely defined on triangular parameters—i.e., at the level of ℝ6/SO(3)—has never been adequately treated. This article describes the results on the orbital geometry and the harmonic analysis of (SO(3),ℝ6) which enable us to obtain such a reduction of Schrödinger’s equation of three-body systems to PDEs solely defined on triangular parameters.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To “control” a system is to make it behave (hopefully) according to our “wishes,” in a way compatible with safety and ethics, at the least possible cost. The systems considered here are distributed—i.e., governed (modeled) by partial differential equations (PDEs) of evolution. Our “wish” is to drive the system in a given time, by an adequate choice of the controls, from a given initial state to a final given state, which is the target. If this can be achieved (respectively, if we can reach any “neighborhood” of the target) the system, with the controls at our disposal, is exactly (respectively, approximately) controllable. A very general (and fuzzy) idea is that the more a system is “unstable” (chaotic, turbulent) the “simplest,” or the “cheapest,” it is to achieve exact or approximate controllability. When the PDEs are the Navier–Stokes equations, it leads to conjectures, which are presented and explained. Recent results, reported in this expository paper, essentially prove the conjectures in two space dimensions. In three space dimensions, a large number of new questions arise, some new results support (without proving) the conjectures, such as generic controllability and cases of decrease of cost of control when the instability increases. Short comments are made on models arising in climatology, thermoelasticity, non-Newtonian fluids, and molecular chemistry. The Introduction of the paper and the first part of all sections are not technical. Many open questions are mentioned in the text.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Evolutionary, pattern forming partial differential equations (PDEs) are often derived as limiting descriptions of microscopic, kinetic theory-based models of molecular processes (e.g., reaction and diffusion). The PDE dynamic behavior can be probed through direct simulation (time integration) or, more systematically, through stability/bifurcation calculations; time-stepper-based approaches, like the Recursive Projection Method [Shroff, G. M. & Keller, H. B. (1993) SIAM J. Numer. Anal. 30, 1099–1120] provide an attractive framework for the latter. We demonstrate an adaptation of this approach that allows for a direct, effective (“coarse”) bifurcation analysis of microscopic, kinetic-based models; this is illustrated through a comparative study of the FitzHugh-Nagumo PDE and of a corresponding Lattice–Boltzmann model.