87 resultados para Dietary Proteins, administration and dosage

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The speed of absorption of dietary amino acids by the gut varies according to the type of ingested dietary protein. This could affect postprandial protein synthesis, breakdown, and deposition. To test this hypothesis, two intrinsically 13C-leucine-labeled milk proteins, casein (CAS) and whey protein (WP), of different physicochemical properties were ingested as one single meal by healthy adults. Postprandial whole body leucine kinetics were assessed by using a dual tracer methodology. WP induced a dramatic but short increase of plasma amino acids. CAS induced a prolonged plateau of moderate hyperaminoacidemia, probably because of a slow gastric emptying. Whole body protein breakdown was inhibited by 34% after CAS ingestion but not after WP ingestion. Postprandial protein synthesis was stimulated by 68% with the WP meal and to a lesser extent (+31%) with the CAS meal. Postprandial whole body leucine oxidation over 7 h was lower with CAS (272 ± 91 μmol⋅kg−1) than with WP (373 ± 56 μmol⋅kg−1). Leucine intake was identical in both meals (380 μmol⋅kg−1). Therefore, net leucine balance over the 7 h after the meal was more positive with CAS than with WP (P < 0.05, WP vs. CAS). In conclusion, the speed of protein digestion and amino acid absorption from the gut has a major effect on whole body protein anabolism after one single meal. By analogy with carbohydrate metabolism, slow and fast proteins modulate the postprandial metabolic response, a concept to be applied to wasting situations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Escherichia coli umuDC operon is induced in response to replication-blocking DNA lesions as part of the SOS response. UmuD protein then undergoes an RecA-facilitated self-cleavage reaction that removes its N-terminal 24 residues to yield UmuD′. UmuD′, UmuC, RecA, and some form of the E. coli replicative DNA polymerase, DNA polymerase III holoenzyme, function in translesion synthesis, the potentially mutagenic process of replication over otherwise blocking lesions. Furthermore, it has been proposed that, before cleavage, UmuD together with UmuC acts as a DNA damage checkpoint system that regulates the rate of DNA synthesis in response to DNA damage, thereby allowing time for accurate repair to take place. Here we provide direct evidence that both uncleaved UmuD and UmuD′ interact physically with the catalytic, proofreading, and processivity subunits of the E. coli replicative polymerase. Consistent with our model proposing that uncleaved UmuD and UmuD′ promote different events, UmuD and UmuD′ interact differently with DNA polymerase III: whereas uncleaved UmuD interacts more strongly with β than it does with α, UmuD′ interacts more strongly with α than it does with β. We propose that the protein–protein interactions we have characterized are part of a higher-order regulatory system of replication fork management that controls when the umuDC gene products can gain access to the replication fork.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the current model for bacterial cell division, FtsZ protein forms a ring that marks the division plane, creating a cytoskeletal framework for the subsequent action of other proteins such as FtsA. This putative protein complex ultimately generates the division septum. Herein we report that FtsZ and FtsA proteins tagged with green fluorescent protein (GFP) colocalize to division-site ring-like structures in living bacterial cells in a visible space between the segregated nucleoids. Cells with higher levels of FtsZ–GFP or with FtsA–GFP plus excess wild-type FtsZ were inhibited for cell division and often exhibited bright fluorescent spiral tubules that spanned the length of the filamentous cells. This suggests that FtsZ may switch from a septation-competent localized ring to an unlocalized spiral under some conditions and that FtsA can bind to FtsZ in both conformations. FtsZ–GFP also formed nonproductive but localized aggregates at a higher concentration that could represent FtsZ nucleation sites. The general domain structure of FtsZ–GFP resembles that of tubulin, since the C terminus of FtsZ is not required for polymerization but may regulate polymerization state. The N-terminal portion of Rhizobium FtsZ polymerized in Escherichia coli and appeared to copolymerize with E. coli FtsZ, suggesting a degree of interspecies functional conservation. Analysis of several deletions of FtsA–GFP suggests that multiple segments of FtsA are important for its localization to the FtsZ ring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Secretory carrier membrane proteins (SCAMPs) are ubiquitously expressed proteins of post-Golgi vesicles. In the presence of the tyrosine phosphatase inhibitor vanadate, or after overexpression in Chinese hamster ovary (CHO) cells, SCAMP1 and SCAMP3 are phosphorylated selectively on tyrosine residue(s). Phosphorylation is reversible after vanadate washout in situ or when isolated SCAMP3 is incubated with the recombinant tyrosine phosphatase PTP1B. Vanadate also causes the partial accumulation of SCAMP3, but not SCAMP1, in “patches” at or near the cell surface. A search for SCAMP kinase activities has shown that SCAMPs 1 and 3, but not SCAMP2, are tyrosine phosphorylated in EGF-stimulated murine fibroblasts overexpressing the EGF receptor (EGFR). EGF catalyzes the progressive phosphorylation of the SCAMPs up to 1 h poststimulation and may enhance colocalization of the EGFR and SCAMP3 within the cell interior. EGF also induces SCAMP–EGFR association, as detected by coimmunoprecipitation, and phosphorylation of SCAMP3 is stimulated by the EGFR in vitro. These results suggest that phosphorylation of SCAMPs, either directly or indirectly, may be functionally linked to the internalization/down-regulation of the EGFR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The roles of two kinesin-related proteins, Kip2p and Kip3p, in microtubule function and nuclear migration were investigated. Deletion of either gene resulted in nuclear migration defects similar to those described for dynein and kar9 mutants. By indirect immunofluorescence, the cytoplasmic microtubules in kip2Δwere consistently short or absent throughout the cell cycle. In contrast, in kip3Δ strains, the cytoplasmic microtubules were significantly longer than wild type at telophase. Furthermore, in the kip3Δ cells with nuclear positioning defects, the cytoplasmic microtubules were misoriented and failed to extend into the bud. Localization studies found Kip2p exclusively on cytoplasmic microtubules throughout the cell cycle, whereas GFP-Kip3p localized to both spindle and cytoplasmic microtubules. Genetic analysis demonstrated that the kip2Δ kar9Δ double mutants were synthetically lethal, whereas kip3Δ kar9Δ double mutants were viable. Conversely, kip3Δ dhc1Δ double mutants were synthetically lethal, whereas kip2Δ dhc1Δ double mutants were viable. We suggest that the kinesin-related proteins, Kip2p and Kip3p, function in nuclear migration and that they do so by different mechanisms. We propose that Kip2p stabilizes microtubules and is required as part of the dynein-mediated pathway in nuclear migration. Furthermore, we propose that Kip3p functions, in part, by depolymerizing microtubules and is required for the Kar9p-dependent orientation of the cytoplasmic microtubules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proper dorsal–ventral patterning in the developing central nervous system requires signals from both the dorsal and ventral portions of the neural tube. Data from multiple studies have demonstrated that bone morphogenetic proteins (BMPs) and Sonic hedgehog protein are secreted factors that regulate dorsal and ventral specification, respectively, within the caudal neural tube. In the developing rostral central nervous system Sonic hedgehog protein also participates in ventral regionalization; however, the roles of BMPs in the developing brain are less clear. We hypothesized that BMPs also play a role in dorsal specification of the vertebrate forebrain. To test our hypothesis we implanted beads soaked in recombinant BMP5 or BMP4 into the neural tube of the chicken forebrain. Experimental embryos showed a loss of the basal telencephalon that resulted in holoprosencephaly (a single cerebral hemisphere), cyclopia (a single midline eye), and loss of ventral midline structures. In situ hybridization using a panel of probes to genes expressed in the dorsal and ventral forebrain revealed the loss of ventral markers with the maintenance of dorsal markers. Furthermore, we found that the loss of the basal telencephalon was the result of excessive cell death and not a change in cell fates. These data provide evidence that BMP signaling participates in dorsal–ventral patterning of the developing brain in vivo, and disturbances in dorsal–ventral signaling result in specific malformations of the forebrain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bacteriophage T4 encodes proteins that are responsible for tightly regulating mRNA synthesis throughout phage development in Escherichia coli. The three classes of T4 promoters (early, middle, and late) are utilized sequentially by the host RNA polymerase as a result of phage-induced modifications. One such modification is the tight binding of the T4 AsiA protein to the σ70 subunit of the RNA polymerase. This interaction is pivotal for the transition between T4 early and middle transcription, since it both inhibits recognition of host and T4 early promoters and stimulates T4 middle mode synthesis. The activation of T4 middle transcription also requires the T4 MotA protein, bound specifically to its recognition sequence, the “Mot box,” which is centered at position −30 of these promoters. Accordingly, the two T4 proteins working in concert are sufficient to effectively switch the transcription specificity of the RNA polymerase holoenzyme. Herein, we investigate the mechanism of transcription activation and report that, while the presence of MotA and AsiA increases the initial recruitment of RNA polymerase to a T4 middle promoter, it does not alter the intrinsic stability of the discrete complexes formed. In addition, we have characterized the RNA polymerase-promoter species by UV laser footprinting and followed their evolution from open into initiating complexes. These data, combined with in vitro transcription assays, indicate that AsiA and MotA facilitate promoter escape, thereby stimulating the production of full-length transcripts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Telomeres are essential for preserving chromosome integrity during the cell cycle and have been specifically implicated in mitotic progression, but little is known about the signaling molecule(s) involved. The human telomeric repeat binding factor protein (TRF1) is shown to be important in regulating telomere length. However, nothing is known about its function and regulation during the cell cycle. The sequence of PIN2, one of three human genes (PIN1-3) we previously cloned whose products interact with the Aspergillus NIMA cell cycle regulatory protein kinase, reveals that it encodes a protein that is identical in sequence to TRF1 apart from an internal deletion of 20 amino acids; Pin2 and TRF1 may be derived from the same gene, PIN2/TRF1. However, in the cell Pin2 was found to be the major expressed product and to form homo- and heterodimers with TRF1; both dimers were localized at telomeres. Pin2 directly bound the human telomeric repeat DNA in vitro, and was localized to all telomeres uniformly in telomerase-positive cells. In contrast, in several cell lines that contain barely detectable telomerase activity, Pin2 was highly concentrated at only a few telomeres. Interestingly, the protein level of Pin2 was highly regulated during the cell cycle, being strikingly increased in G2+M and decreased in G1 cells. Moreover, overexpression of Pin2 resulted in an accumulation of HeLa cells in G2+M. These results indicate that Pin2 is the major human telomeric protein and is highly regulated during the cell cycle, with a possible role in mitosis. The results also suggest that Pin2/TRF1 may connect mitotic control to the telomere regulatory machinery whose deregulation has been implicated in cancer and aging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the discovery of coenzyme Q (CoQ) as an obligatory cofactor for H+ transport by uncoupling protein 1 (UCP1) [Echtay, K. S., Winkler, E. & Klingenberg, M. (2000) Nature (London) 408, 609–613] we show here that UCP2 and UCP3 are also highly active H+ transporters and require CoQ and fatty acid for H+ transport, which is inhibited by low concentrations of nucleotides. CoQ is proposed to facilitate injection of H+ from fatty acid into UCP. Human UCP2 and 3 expressed in Escherichia coli inclusion bodies are solubilized, and by exchange of sarcosyl against digitonin, nucleotide binding as measured with 2′-O-[5-(dimethylamino)naphthalene-1-sulfonyl]-GTP can be restored. After reconstitution into vesicles, Cl− but no H+ are transported. The addition of CoQ initiates H+ transport in conjunction with fatty acids. This increase is fully sensitive to nucleotides. The rates are as high as with reconstituted UCP1 from mitochondria. Maximum activity is at a molar ratio of 1:300 of CoQ:phospholipid. In UCP2 as in UCP1, ATP is a stronger inhibitor than ADP, but in UCP3 ADP inhibits more strongly than ATP. Thus UCP2 and UCP3 are regulated differently by nucleotides, in line with their different physiological contexts. These results confirm the regulation of UCP2 and UCP3 by the same factors CoQ, fatty acids, and nucleotides as UCP1. They supersede reports that UCP2 and UCP3 may not be H+ transporters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The HIV-1 regulatory proteins Rev and Tat are expressed early in the virus life cycle and thus may be important targets for the immune control of HIV-1-infection and for effective vaccines. However, the extent to which these proteins are targeted in natural HIV-1 infection as well as precise epitopes targeted by human cytotoxic T lymphocytes (CTL) remain to be defined. In the present study, 57 HIV-1-infected individuals were screened for responses against Tat and Rev by using overlapping peptides spanning the entire Tat and Rev proteins. CD8+ T cell responses against Tat and Rev were found in up to 19 and 37% of HIV-1-infected individuals, respectively, indicating that these regulatory proteins are important targets for HIV-1-specific CTL. Despite the small size of these proteins, multiple CTL epitopes were identified in each. These data indicate that Tat and Rev are frequently targeted by CTL in natural HIV-1 infection and may be important targets for HIV vaccines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The absence of the fragile X mental retardation protein (FMRP), encoded by the FMR1 gene, is responsible for pathologic manifestations in the Fragile X Syndrome, the most frequent cause of inherited mental retardation. FMRP is an RNA-binding protein associated with polysomes as part of a messenger ribonucleoprotein (mRNP) complex. Although its function is poorly understood, various observations suggest a role in local protein translation at neuronal dendrites and in dendritic spine maturation. We present here the identification of CYFIP1/2 (Cytoplasmic FMRP Interacting Proteins) as FMRP interactors. CYFIP1/2 share 88% amino acid sequence identity and represent the two members in humans of a highly conserved protein family. Remarkably, whereas CYFIP2 also interacts with the FMRP-related proteins FXR1P/2P, CYFIP1 interacts exclusively with FMRP. FMRP–CYFIP interaction involves the domain of FMRP also mediating homo- and heteromerization, thus suggesting a competition between interaction among the FXR proteins and interaction with CYFIP. CYFIP1/2 are proteins of unknown function, but CYFIP1 has recently been shown to interact with the small GTPase Rac1, which is implicated in development and maintenance of neuronal structures. Consistent with FMRP and Rac1 localization in dendritic fine structures, CYFIP1/2 are present in synaptosomal extracts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presynaptic Ca2+ channels are crucial elements in neuronal excitation-secretion coupling. In addition to mediating Ca2+ entry to initiate transmitter release, they are thought to interact directly with proteins of the synaptic vesicle docking/fusion machinery. Here we report isoform-specific, stoichiometric interaction of the BI and rbA isoforms of the alpha1A subunit of P/Q-type Ca2+ channels with the presynaptic membrane proteins syntaxin and SNAP-25 in vitro and in rat brain membranes. The BI isoform binds to both proteins, while only interaction with SNAP-25 can be detected in vitro for the rbA isoform. The synaptic protein interaction ("synprint") site involves two adjacent segments of the intracellular loop connecting domains II and III between amino acid residues 722 and 1036 of the BI sequence. This interaction is competitively blocked by the corresponding region of the N-type Ca2+ channel, indicating that these two channels bind to overlapping regions of syntaxin and SNAP-25. Our results provide a molecular basis for a physical link between Ca2+ influx into nerve terminals and subsequent exocytosis of neurotransmitters at synapses that have presynaptic Ca2+ channels containing alpha1A subunits.