15 resultados para Dicumyl Peroxide

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pulmonary neuroepithelial bodies (NEB) are widely distributed throughout the airway mucosa of human and animal lungs. Based on the observation that NEB cells have a candidate oxygen sensor enzyme complex (NADPH oxidase) and an oxygen-sensitive K+ current, it has been suggested that NEB may function as airway chemoreceptors. Here we report that mRNAs for both the hydrogen peroxide sensitive voltage gated potassium channel subunit (KH2O2) KV3.3a and membrane components of NADPH oxidase (gp91phox and p22phox) are coexpressed in the NEB cells of fetal rabbit and neonatal human lungs. Using a microfluorometry and dihydrorhodamine 123 as a probe to assess H2O2 generation, NEB cells exhibited oxidase activity under basal conditions. The oxidase in NEB cells was significantly stimulated by exposure to phorbol esther (0.1 μM) and inhibited by diphenyliodonium (5 μM). Studies using whole-cell voltage clamp showed that the K+ current of cultured fetal rabbit NEB cells exhibited inactivating properties similar to KV3.3a transcripts expressed in Xenopus oocyte model. Exposure of NEB cells to hydrogen peroxide (H2O2, the dismuted by-product of the oxidase) under normoxia resulted in an increase of the outward K+ current indicating that H2O2 could be the transmitter modulating the O2-sensitive K+ channel. Expressed mRNAs or orresponding protein products for the NADPH oxidase membrane cytochrome b as well as mRNA encoding KV3.3a were identified in small cell lung carcinoma cell lines. The studies presented here provide strong evidence for an oxidase-O2 sensitive potassium channel molecular complex operating as an O2 sensor in NEB cells, which function as chemoreceptors in airways and in NEB related tumors. Such a complex may represent an evolutionary conserved biochemical link for a membrane bound O2-signaling mechanism proposed for other cells and life forms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Escherichia coli transcription factor OxyR is activated by the formation of an intramolecular disulfide bond and subsequently is deactivated by enzymatic reduction of the disulfide bond. Here we show that OxyR can be activated by two possible pathways. In mutants defective in the cellular disulfide-reducing systems, OxyR is constitutively activated by a change in the thiol—disulfide redox status in the absence of added oxidants. In wild-type cells, OxyR is activated by hydrogen peroxide. By monitoring the presence of the OxyR disulfide bond after exposure to hydrogen peroxide in vivo and in vitro, we also show that the kinetics of OxyR oxidation by low concentrations of hydrogen peroxide is significantly faster than the kinetics of OxyR reduction, allowing for transient activation in an overall reducing environment. We propose that the activity of OxyR in vivo is determined by the balance between hydrogen peroxide levels and the cellular redox environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogen peroxide (H2O2) generated in response to wounding can be detected at wound sites and in distal leaf veins within 1 hr after wounding. The response is systemic and maximizes at about 4–6 hr in both wounded and unwounded leaves, and then declines. The timing of the response corresponds with an increase in wound-inducible polygalacturonase (PG) mRNA and enzyme activity previously reported, suggesting that oligogalacturonic acid (OGA) fragments produced by PG are triggering the H2O2 response. Systemin, OGA, chitosan, and methyl jasmonate (MJ) all induce the accumulation of H2O2 in leaves. Tomato plants transformed with an antisense prosystemin gene produce neither PG activity or H2O2 in leaves in response to wounding, implicating systemin as a primary wound signal. The antisense plants do produce both PG activity and H2O2 when supplied with systemin, OGA, chitosan, or MJ. A mutant tomato line compromised in the octadecanoid pathway does not exhibit PG activity or H2O2 in response to wounding, systemin, OGA, or chitosan, but does respond to MJ, indicating that the generation of H2O2 requires a functional octadecanoid signaling pathway. Among 18 plant species from six families that were assayed for wound-inducible PG activity and H2O2 generation, 14 species exhibited both wound-inducible PG activity and the generation of H2O2. Four species, all from the Fabaceae family, exhibited little or no wound-inducible PG activity and did not generate H2O2. The time course of wound-inducible PG activity and H2O2 in Arabidopsis thaliana leaves was similar to that found in tomato. The cumulative data suggest that systemic wound signals that induce PG activity and H2O2 are widespread in the plant kingdom and that the response may be associated with the defense of plants against both herbivores and pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Schizosaccharomyces pombe stress-activated Sty1p/Spc1p mitogen-activated protein (MAP) kinase regulates gene expression through the Atf1p and Pap1p transcription factors, homologs of human ATF2 and c-Jun, respectively. Mcs4p, a response regulator protein, acts upstream of Sty1p by binding the Wak1p/Wis4p MAP kinase kinase kinase. We show that phosphorylation of Mcs4p on a conserved aspartic acid residue is required for activation of Sty1p only in response to peroxide stress. Mcs4p acts in a conserved phospho-relay system initiated by two PAS/PAC domain-containing histidine kinases, Mak2p and Mak3p. In the absence of Mak2p or Mak3p, Sty1p fails to phosphorylate the Atf1p transcription factor or induce Atf1p-dependent gene expression. As a consequence, cells lacking Mak2p and Mak3p are sensitive to peroxide attack in the absence of Prr1p, a distinct response regulator protein that functions in association with Pap1p. The Mak1p histidine kinase, which also contains PAS/PAC repeats, does not regulate Sty1p or Atf1p but is partially required for Pap1p- and Prr1p-dependent transcription. We conclude that the transcriptional response to free radical attack is initiated by at least two distinct phospho-relay pathways in fission yeast.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyzed the pathogenesis-related generation of H2O2 using the microscopic detection of 3,3-diaminobenzidine polymerization in near-isogenic barley (Hordeum vulgare L.) lines carrying different powdery mildew (Blumeria graminis f.sp. hordei) resistance genes, and in a line expressing chemically activated resistance after treatment with 2,6-dichloroisonicotinic acid (DCINA). Hypersensitive cell death in Mla12 and Mlg genotypes or after chemical activation by DCINA was associated with H2O2 accumulation throughout attacked cells. Formation of cell wall appositions (papillae) mediated in Mlg and mlo5 genotypes and in DCINA-activated plants was paralleled by H2O2 accumulation in effective papillae and in cytosolic vesicles of up to 2 μm in diameter near the papillae. H2O2 was not detected in ineffective papillae of cells that had been successfully penetrated by the fungus. These findings support the hypothesis that H2O2 may play a substantial role in plant defense against the powdery mildew fungus. We did not detect any accumulation of salicylic acid in primary leaves after inoculation of the different barley genotypes, indicating that these defense responses neither relied on nor provoked salicylic acid accumulation in barley.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

H2O2 is a widespread molecule in many biological systems. It is created enzymatically in living cells during various oxidation reactions and by leakage of electrons from the electron transport chains. Depending on the concentration H2O2 can induce cell protective responses, programmed cell death, or necrosis. Here we provide evidence that H2O2 may function as a developmental signal in the differentiation of secondary walls in cotton (Gossypium hirsutum) fibers. Three lines of evidence support this conclusion: (a) the period of H2O2 generation coincided with the onset of secondary wall deposition, (b) inhibition of H2O2 production or scavenging the available H2O2 from the system prevented the wall differentiation process, and (c) exogenous addition of H2O2 prematurely promoted secondary wall formation in young fibers. Furthermore, we provide support for the concept that H2O2 generation could be mediated by the expression of the small GTPase Rac, the accumulation of which was shown previously to be strongly induced during the onset of secondary wall differentiation. In support of Rac's role in the activation of NADPH oxidase and the generation of reactive oxygen species, we transformed soybean (Glycine max) and Arabidopsis cells with mutated Rac genes. Transformation with a dominantly activated cotton Rac13 gene resulted in constitutively higher levels of H2O2, whereas transformation with the antisense and especially with dominant-negative Rac constructs decreased the levels of H2O2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nox1, a homologue of gp91phox, the catalytic moiety of the superoxide (O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{-}}}\end{equation*}\end{document})-generating NADPH oxidase of phagocytes, causes increased O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{-}}}\end{equation*}\end{document} generation, increased mitotic rate, cell transformation, and tumorigenicity when expressed in NIH 3T3 fibroblasts. This study explores the role of reactive oxygen species (ROS) in regulating cell growth and transformation by Nox1. H2O2 concentration increased ≈10-fold in Nox1-expressing cells, compared with <2-fold increase in O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{-}}}\end{equation*}\end{document}. When human catalase was expressed in Nox1-expressing cells, H2O2 concentration decreased, and the cells reverted to a normal appearance, the growth rate normalized, and cells no longer produced tumors in athymic mice. A large number of genes, including many related to cell cycle, growth, and cancer (but unrelated to oxidative stress), were expressed in Nox1-expressing cells, and more than 60% of these returned to normal levels on coexpression of catalase. Thus, H2O2 in low concentrations functions as an intracellular signal that triggers a genetic program related to cell growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peroxidase activity was characterized in lettuce (Lactuca sativa L.) leaf tissue. Changes in the activity and distribution of the enzyme were examined during the development of a nonhost hypersensitive reaction (HR) induced by Pseudomonas syringae (P. s.) pv phaseolicola and in response to an hrp mutant of the bacterium. Assays of activity in tissue extracts revealed pH optima of 4.5, 6.0, 5.5 to 6.0, and 6.0 to 6.5 for the substrates tetramethylbenzidine, guaiacol, caffeic acid, and chlorogenic acid, respectively. Inoculation with water or with wild-type or hrp mutant strains of P. s. pv phaseolicola caused an initial decline in total peroxidase activity; subsequent increases depended on the hydrogen donor used in the assay. Guaiacol peroxidase recovered more rapidly in tissues undergoing the HR, whereas changes in tetramethylbenzidine peroxidase were generally similar in the two interactions. In contrast, increases in chlorogenic acid peroxidase were significantly higher in tissues inoculated with the hrp mutant. During the HR, increased levels of Mn2+/2,4-dichlorophenol-stimulated NADH and NADPH oxidase activities, characteristic of certain peroxidases, were found in intercellular fluids and closely matched the accumulation of H2O2 in the apoplast. Histochemical analysis of peroxidase distribution by electron microscopy revealed a striking, highly localized increase in activity within the endomembrane system and cell wall at the sites of bacterial attachment. However, no clear differences in peroxidase location were observed in tissue challenged by the wild-type strain or the hrp mutant. Our results highlight the significance of the subcellular control of oxidative reactions leading to the generation of reactive oxygen species, cell wall alterations, and the HR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

3-Hydroxykynurenine (3-HK) is a tryptophan metabolite whose level in the brain is markedly elevated under several pathological conditions, including Huntington disease and human immunodeficiency virus infection. Here we demonstrate that micromolar concentrations (1-100 microM) of 3-HK cause cell death in primary neuronal cultures prepared from rat striatum. The neurotoxicity of 3-HK was blocked by catalase and desferrioxamine but not by superoxide dismutase, indicating that the generation of hydrogen peroxide and hydroxyl radical is involved in the toxicity. Measurement of peroxide levels revealed that 3-HK caused intracellular accumulation of peroxide, which was largely attenuated by application of catalase. The peroxide accumulation and cell death caused by 1-10 microM 3-HK were also blocked by pretreatment with allopurinol or oxypurinol, suggesting that endogenous xanthine oxidase activity is involved in exacerbation of 3-HK neurotoxicity. Furthermore, NADPH diaphorase-containing neurons were spared from toxicity of these concentrations of 3-HK, a finding reminiscent of the pathological characteristics of several neurodegenerative disorders such as Huntington disease. These results suggest that 3-HK at pathologically relevant concentrations renders neuronal cells subject to oxidative stress leading to cell death, and therefore that this endogenous compound should be regarded as an important factor in pathogenesis of neurodegenerative disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cu,Zn-superoxide dismutase (SOD) is known to be a locus of mutation in familial amyotrophic lateral sclerosis (FALS). Transgenic mice that express a mutant Cu,Zn-SOD, Gly-93--> Ala (G93A), have been shown to develop amyotrophic lateral sclerosis (ALS) symptoms. We cloned the FALS mutant, G93A, and wild-type cDNA of human Cu,Zn-SOD, overexpressed them in Sf9 insect cells, purified the proteins, and studied their enzymic activities for catalyzing the dismutation of superoxide anions and the generation of free radicals with H2O2 as substrate. Our results showed that both enzymes contain one copper ion per subunit and have identical dismutation activity. However, the free radical-generating function of the G93A mutant, as measured by the spin trapping method, is enhanced relative to that of the wild-type enzyme, particularly at lower H2O2 concentrations. This is due to a small, but reproducible, decrease in the value of Km for H2O2 for the G93A mutant, while the kcat is identical for both enzymes. Thus, the ALS symptoms observed in G93A transgenic mice are not caused by the reduction of Cu,Zn-SOD activity with the mutant enzyme; rather, it is induced by a gain-of-function, an enhancement of the free radical-generating function. This is consistent with the x-ray crystallographic studies showing the active channel of the FALS mutant is slightly larger than that of the wild-type enzyme; thus, it is more accessible to H2O2. This gain-of-function, in part, may provide an explanation for the association between ALS and Cu,Zn-SOD mutants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Escherichia coli can respond to gradients of specific compounds, moving up gradients of attractants and down gradients of repellents. Stimulated phagocytic leukocytes produce H2O2, OCl-, and N-chlorotaurine in a response termed the respiratory burst. E. coli is actively repelled by these compounds. Catalase in the suspending medium eliminated the effect of H2O2. Repulsion by H2O2 could be demonstrated with 1 microM H2O2, which is far below the level that caused overt toxicity. Strains with defects in the biosynthesis of glutathione or lacking hydroperoxidases I and II retained this response to H2O2, and 2.0 mM CN- did not interfere with it. Mutants with defects in any one of the four known methyl-accepting chemotaxis proteins also retained the ability to respond to H2O2, but a "gutted" mutant that was deleted for all four methyl-accepting chemotaxis proteins, as well as for CheA, CheW, CheR, CheB, CheY, and CheZ, did not respond to H2O2. Hypochlorite and N-chlorotaurine were also strongly repellent. Chemotaxis down gradients of H2O2, OCl-, and N-chlorotaurine may contribute to the survival of commensal or pathogenic microorganisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Alzheimer disease (AD) the amyloid beta-peptide (A beta) accumulates in plaques in the brain. A beta can be neurotoxic by a mechanism involving induction of reactive oxygen species (ROS) and elevation of intracellular free calcium levels ([Ca2+]i). In light of evidence for an inflammatory response in the brain in AD and reports of increased levels of tumor necrosis factor (TNF) in AD brain we tested the hypothesis that TNFs affect neuronal vulnerability to A beta. A beta-(25-35) and A beta-(1-40) induced neuronal degeneration in a concentration- and time-dependent manner. Pretreatment of cultures for 24 hr with TNF-beta or TNF-alpha resulted in significant attenuation of A beta-induced neuronal degeneration. Accumulation of peroxides induced in neurons by A beta was significantly attenuated in TNF-pretreated cultures, and TNFs protected neurons against iron toxicity, suggesting that TNFs induce antioxidant pathways. The [Ca2+]i response to glutamate (quantified by fura-2 imaging) was markedly potentiated in neurons exposed to A beta, and this action of A beta was suppressed in cultures pretreated with TNFs. Electrophoretic mobility-shift assays demonstrated an induction of a kappa beta-binding activity in hippocampal cells exposed to TNFs. Exposure of cultures to I kappa B (MAD3) antisense oligonucleotides, a manipulation designed to induce NF-kappa B, mimicked the protection by TNFs. These data suggest that TNFs protect hippocampal neurons against A beta toxicity by suppressing accumulation of ROS and Ca2+ and that kappa B-dependent transcription is sufficient to mediate these effects. A modulatory role for TNF in the neurodegenerative process in AD is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Bacillus subtilis mrgA gene encodes an abundant DNA-binding protein that protects cells against the lethal effects of H2O2. Transcription of mrgA is induced by H2O2 or by entry into stationary phase when manganese and iron levels are low. We have selected for strains derepressed for transcription of mrgA in the presence of Mn(II). The resulting cis-acting mutants define an operator site just upstream of the mrgA promoter. Similar sequences flank the promoters for the catalase gene, katA, and the heme biosynthesis operon, hemAXCDBL. Like mrgA, transcription of the katA and hem genes is repressed by Mn(II), which thereby potentiates the killing action of H2O2. We identified two classes of trans-acting mutants derepressed for mrgA transcription in the presence of Mn(II): some exhibit a coordinate derepression of MrgA, catalase, heme biosynthesis, and alkyl hydroperoxide reductase and are H2O2 resistant, while others have reduced catalase activity and are H2O2 sensitive. These data indicate that the peroxide stress response of B. subtilis is regulated by a repressor that senses both metal ion levels and H2O2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exposure of cells to H2O2 mimics many of the effects of treatment of cells with extracellular ligands. Among these is the stimulation of tyrosine phosphorylation. In this study, we show that exposure of cells to H2O2 increases the catalytic activity of the lymphocyte-specific tyrosine protein kinase p56lck (Lck) and induces tyrosine phosphorylation of Lck at Tyr-394, the autophosphorylation site. Using mutant forms of Lck, we found that Tyr-394 is required for H2O2-induced activation of Lck, suggesting that phosphorylation of this site may activate Lck. In addition, H2O2 treatment induced phosphorylation at Tyr-394 in a catalytically inactive mutant of Lck in cells that do not express endogenous Lck. This demonstrates that a kinase other than Lck itself is capable of phosphorylating Lck at the so-called autophosphorylation site and raises the possibility that this as yet unidentified tyrosine protein kinase functions as an activator of Lck. Such an activating enzyme could play an important role in signal transduction in T cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the detection of endogenous intracellular glutathionyl (GS.) radicals in the intact neuroblastoma cell line NCB-20 under oxidative stress. Spin-trapping and electron paramagnetic resonance (EPR) spectroscopic methods were used for monitoring the radicals. The cells incubated with the spin trap 5,5-dimethyl-1-pyrroline 1-oxide (DMPO) were challenged with H2O2 generated by the enzymic reaction of glucose/glucose oxidase. These cells exhibit the EPR spectrum of the GS. radical adduct of DMPO (DMPO-.SG) without exogenous reduced glutathione (GSH). The identity of this radical adduct was confirmed by observing hyperfine coupling constants identical to previously reported values in in vitro studies, which utilized known enzymic reactions, such as horseradish peroxidase and Cu/Zn superoxide dismutase, with GSH and H2O2 as substrates. The formation of the GS. radicals required viable cells and continuous biosynthesis of GSH. No significant effect on the resonance amplitude by the addition of a membrane-impermeable paramagnetic broadening agent indicated that these radicals were located inside the intact cell. N-Acetyl-L-cysteine (NAC)-treated cells produced NAC-derived free radicals (NAC.) in place of GS. radicals. The time course studies showed that DMPO-.SG formation exhibited a large increase in its concentration after a lag period, whereas DMPO-NAC. formation from NAC-treated cells did not show this sudden increase. These results were discussed in terms of the limit of antioxidant enzyme defenses in cells and the potential role of the GS. radical burst in activation of the transcription nuclear factor NF-kappa B in response to oxidative stress.