2 resultados para Diaminodiphenyl sulfones

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plasmodium falciparum causes the most severe form of malaria in humans. An important class of drugs in malaria treatment is the sulfone/sulfonamide group, of which sulfadoxine is the most commonly used. The target of sulfadoxine is the enzyme dihydropteroate synthase (DHPS), and sequencing of the DHPS gene has identified amino acid differences that may be involved in the mechanism of resistance to this drug. In this study we have sequenced the DHPS gene in 10 isolates from Thailand and identified a new allele of DHPS that has a previously unidentified amino acid difference. We have expressed eight alleles of P. falciparum PPPK-DHPS in Escherichia coli and purified the functional enzymes to homogeneity. Strikingly, the Ki for sulfadoxine varies by almost three orders of magnitude from 0.14 μM for the DHPS allele from sensitive isolates to 112 μM for an enzyme expressed in a highly resistant isolate. Comparison of the Ki of different sulfonamides and the sulfone dapsone has suggested that the amino acid differences in DHPS would confer cross-resistance to these compounds. These results show that the amino acid differences in the DHPS enzyme of sulfadoxine-resistant isolates of P. falciparum are central to the mechanism of resistance to sulfones and sulfonamides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The proteasome is a large protease complex consisting of multiple catalytic subunits that function simultaneously to digest protein substrates. This complexity has made deciphering the role each subunit plays in the generation of specific protein fragments difficult. Positional scanning libraries of peptide vinyl sulfones were generated in which the amino acid located directly at the site of hydrolysis (P1 residue) was held constant and sequences distal to that residue (P2, P3, and P4 positions) were varied across all natural amino acids (except cysteine and methionine). Binding information for each of the individual catalytic subunits was obtained for each library under a variety of different conditions. The resulting specificity profiles indicated that substrate positions distal to P1 are critical for directing substrates to active subunits in the complex. Furthermore, specificity profiles of IFN-γ-regulated subunits closely matched those of their noninducible counterparts, suggesting that subunit swapping may modulate substrate processing by a mechanism that does require a change in the primary sequence specificity of individual catalytic subunits in the complex. Finally, specificity profiles were used to design specific inhibitors of a single active site in the complex. These reagents can be used to further establish the role of each subunit in substrate processing by the proteasome.