3 resultados para Design-led innovation

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Daphniphyllum alkaloids are a group of highly complex polycyclic alkaloids. Examination of the structures if several members of this family of natural products led to a hypothesis about their mode of biosynthesis (depicted in Scheme SI). Based on this hypothetical biosynthetic pathway, a laboratory synthesis was designed that incorporated as a key transformation the novel one-pot transformation of dialdehyde 24 to pentacyclic unsaturated amine 25. This process turned out to be an exceptionally efficient way to construct the pentacyclic nucleus of the Daphniphyllum alkaloids. However, a purely fortuitous discovery, resulting from accidental use of methylamine rather than ammonia, led to a great improvement in the synthesis and suggests an even more attractive possible biosynthesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have demonstrated that it is possible to radically change the specificity of maltose binding protein by converting it into a zinc sensor using a rational design approach. In this new molecular sensor, zinc binding is transduced into a readily detected fluorescence signal by use of an engineered conformational coupling mechanism linking ligand binding to reporter group response. An iterative progressive design strategy led to the construction of variants with increased zinc affinity by combining binding sites, optimizing the primary coordination sphere, and exploiting conformational equilibria. Intermediates in the design series show that the adaptive process involves both introduction and optimization of new functions and removal of adverse vestigial interactions. The latter demonstrates the importance of the rational design approach in uncovering cryptic phenomena in protein function, which cannot be revealed by the study of naturally evolved systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To determine which features of retroviral vector design most critically affect gene expression in hematopoietic cells in vivo, we have constructed a variety of different retroviral vectors which encode the same gene product, human adenosine deaminase (EC 3.5.4.4), and possess the same vector backbone yet differ specifically in transcriptional control sequences suggested by others to be important for gene expression in vivo. Murine bone marrow cells were transduced by each of the recombinant viruses and subsequently used to reconstitute the hematopoietic system of lethally irradiated recipients. Five to seven months after transplantation, analysis of the peripheral blood of animals transplanted with cells transduced by vectors which employ viral long terminal repeats (LTRs) for gene expression indicated that in 83% (77/93) of these animals, the level of human enzyme was equal to or greater than the level of endogenous murine enzyme. Even in bone marrow transplant recipients reconstituted for over 1 year, significant levels of gene expression were observed for each of the vectors in their bone marrow, spleen, macrophages, and B and T lymphocytes. However, derivatives of the parental MFG-ADA vector which possess either a single base mutation (termed B2 mutation) or myeloproliferative sarcoma virus LTRs rather than the Moloney murine leukemia virus LTRs led to significantly improved gene expression in all lineages. These studies indicate that retroviral vectors which employ viral LTRs for the expression of inserted sequences make it possible to obtain high levels of a desired gene product in most hematopoietic cell lineages for close to the lifetime of bone marrow transplant recipients.